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Keywords 
  Abstract 

In this study, the penetration rate of the excavation machine in 
Tabriz Metro Line 2 using geotechnical parameters and neural 
networks is estimated. For this purpose, through comprehensive 
analysis, including borehole drilling, field and laboratory tests, and 
consideration of similar projects, the geotechnical parameters for 
soil and rock layers have been determined. Preprocessing data 
techniques, such as normalization, have been applied to address 

challenges such as noise and bias in raw data. Also, neural networks with varying architectures were 
evaluated using mean square error and correlation coefficient as evaluation metrics. The architecture (1-
12-8) of this research demonstrates superior performance with a mean square error of 1.630 and a 
correlation coefficient of 0.932. This shows a strong relationship between predicted and actual penetration 
rate values. The findings of this research highlight the effectiveness of neural networks in estimating the 
penetration rate. Accurate estimations of the non-linear penetration rate were achieved by employing a 
single-layer neural network with multiple neurons using appropriate transfer functions. Overall, this 
research contributes to the understanding of geotechnical considerations for urban train routes and 
demonstrates the accuracy of neural networks for penetration rate estimation. These insights have 
implications for the design and engineering of similar projects. 
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1. INTRODUCTION 

One of the most critical elements in the 
excavation of tunnels excavated using a Tunnel 
Boring Machine (TBM) is the evaluation of its 
advancement rate and, consequently, the 
estimation of the penetration per revolution of the 
cutter head. Due to the complexity of the chip 
formation process under the cutter head disk 
tools, empirical formulations have been developed 
over time to estimate the penetration per 
revolution based on key rock and disk parameters. 
However, some of these formulations have proven 
difficult to use or only applicable within a limited 

range of applications. Additionally, many methods 
do not consider all the essential parameters that 
can influence the rock breakage mechanism when 
using disk tools [1]. 

There has been a continuous interest in 
expanding underground rail networks, and 
shielded tunnel boring machines are widely 
employed in urban environments for tunnel 
construction worldwide due to their fast, safe, and 
high-speed tunneling capabilities [2]. In recent 
decades, numerous researchers have developed 
empirical and theoretical models to predict TBM 
performance through factors such as penetration 
rate, advance rate, and the field penetration index 
(FPI) [3-5]. To estimate TBM performance 
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parameters like penetration rate, advance rate, 
and FPI, many simple Artificial Intelligence (AI) 
techniques, such as artificial neural networks 
(ANN), particle swarm optimization (PSO), and 
others, have been employed [6-9]. Furthermore, in 
a continuous effort to leverage advanced 
technologies, researchers have enhanced the 
accuracy of the back-analysis procedure by 
integrating Machine Learning (ML) technology. 
ML technology, as a subset of AI, utilizes historical 
data to predict new output values and has become 
a powerful tool in geotechnical engineering. Many 
researchers have successfully applied ML 
technology in this field [10-12]. 

Machine learning and deep learning methods 
excel in solving complex mapping problems and 
have increasingly found successful applications in 
the engineering field [13-17]. Sindhwani et al. 
showed that UCS, BTS, RQD, Js, and thrust have 
emerged as the most significant variables in their 
ANN analysis, with a normalized importance of 
more than 85%. Torque had a value of 60% [2]. 
Armaghani et al. studied three intelligent models, 
namely pre-developed ANN, hybrid PSO-ANN, and 
hybrid ICA-ANN, to estimate the advance rate of 
TBMs. A comparison with previously developed 
intelligent models for TBM performance 
prediction showed that the proposed PSO-ANN 
and ICA-ANN models have a high degree of 
accuracy and efficiency, making them suitable as 
new techniques for predicting TBM performance 
[18]. 

Ahmadi et al. (2013) used a hybrid imperialist 
competitive algorithm and an artificial neural 
network algorithm that effectively combines local 
searching. In comparing the introduced ICA-ANN 
model and other intelligent models (BP-ANN, GA-
ANN, PSO-ANN, and fuzzy logic approaches), the 
ICA-ANN model performed better [19]. 
Armaghani et al. reviewed previous studies to 
select the most influential parameters for PR. They 
identified seven parameters, including RQD, UCS, 
RMR, BTS, WZ, TF, and RPM, as model inputs. 
Using all 1286 datasets, they developed three 
predictive models (ANN, PSO-ANN, and ICA-ANN) 
to predict the PR of the PSRWT tunnel. They also 
studied the application of several optimization 
techniques for estimating the TBM advance rate in 
granitic rocks [18,20,21]. Farrokh et al. analyzed 
the available data and indicated that a specific set 
of parameters, including tunnel diameter, UCS, 
RPM, and rock type, account for approximately 
half of the variation in PR and PRev. These 
analyses further indicate that UCS is the single 
most crucial rock parameter controlling PRev. The 
frequency and condition of jointing can also 
dominate TBM performance, especially on harder 
rocks. Further study of this phenomenon, 

including a quantitative representation of joint 
spacing and condition, may be necessary to 
improve model accuracy in harder rock units [22]. 

Wang et al. developed a hybrid model that 
combined QPSO and an ILF-ANN. Sixteen features, 
including tunneling parameters and rock mass 
classes, were used as inputs to the model. The 
control parameters, such as the cutter head 
rotation speed and penetration, were used as 
outputs. The results showed that the proposed 
method achieved effective optimization 
performance. However, the study did not consider 
the various weights of the penetration rate and the 
rock-breaking specific energy in the loss function 
of the ANN [23]. Hassan et al. used Multiple-Linear 
Regression (MLR) and Artificial Neural Networks 
(ANNWs) to develop a predictive model based on 
specific tunneling parameters. The aim was to 
evaluate the relative importance of system 
parameters based on their influence on model 
responses [24]. Mahdevari et al. found that ANN is 
a useful tool for predicting tunnel convergence. 
They developed a Multi-layer Perceptron (MLP) 
neural network with nine inputs for predicting 
tunnel convergence. The optimum ANN 
architecture consists of nine neurons in the input 
layer, two hidden layers with 35 and 28 neurons 
respectively, and one neuron in the output layer 
[25]. Mahdevari et al. used AI algorithms, specific 
Support Vector Machines (SVM), and Artificial 
Neural Networks (ANN), to predict ground 
conditions in a TBM-excavated tunnel and avoid 
undesirable events such as machine trapping. 
They focused on predicting tunnel convergence 
based on effective parameters [26]. Zhou et al. 
systematically verified and compared hybrid XGB-
based optimization techniques for predicting TBM 
PR. They developed hybrid models by combining 
XGB with six intelligent optimization algorithms. 
The goal was to improve the accuracy and 
effectiveness of predicting TBM PR [27]. 
Koopialipoor et al. focused on predicting TBM PR 
by developing a new model based on the Group 
Method of Data Handling (GMDH) model. They 
investigated and utilized several effective 
parameters for TBM PR, including RQD, UCS, RMR, 
BTS, WZ, TF, and RPM. Using field observations 
and laboratory tests, they prepared a database 
with 209 datasets to estimate PR. The GMDH 
model showed higher accuracy and can be 
considered a new model in this field [28]. 

The research study focuses on estimating the 
penetration rate along Tabriz Metro Line 2 using 
neural networks and geotechnical parameters. 
This study contributes to our understanding of 
geotechnical considerations for urban train routes 
and highlights the accuracy of neural networks in 
estimating penetration rates. These insights have 
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significant implications for the design and 
engineering of similar projects. It's always exciting 
to see how innovative approaches and 
technologies can improve our understanding and 
enhance the efficiency of construction processes. 

2. ARTIFICIAL NEURAL NETWORKS 

The purpose of artificial neural networks 
(ANNs) is to replicate the structure and 
functioning of the human brain. One of the 
primary and significant applications of ANNs is in 
the field of forecasting. In essence, an artificial 
neural network is comprised of interconnected 
neurons arranged in different layers. These 
neurons communicate and exchange information 
with each other. Artificial neurons act as basic 
units for processing information within the 
network, performing simple information-
processing tasks. 

2.1. Neural Network Architecture 

One or more neurons together form a network 
layer. A network can consist of one or more layers. 
In Fig. 1, a single-layer network with input R and 
neuron S is shown. 

 
Fig. 1. A single-layer network [36]. 

In this network, the elements of the input 
vector p are applied to all neurons. They are then 
multiplied by the respective weights, added to the 
bias, and passed through a transfer function to 
obtain the output. The output of the network will 
be a vector. It's important to note that the number 
of inputs (R) does not necessarily need to be equal 
to the number of neurons (S). In a composite 
single-layer network, different transfer functions 
can be utilized within a single layer, allowing for 
more diverse processing capabilities. Here is the 
calculation given in Eq. (1) as follows: 

𝑊 = [

𝑤1,1 𝑤1,2 ⋯ 𝑤1,𝑅

𝑤2,1 𝑤2,2 ⋯ 𝑤2,𝑅

⋮ ⋮ . ⋮
𝑤𝑠,1 𝑤𝑠,2 ⋯ 𝑤𝑠,𝑅

] (1) 

Where are: W – weight matrix (will have a size 

of S×R), 𝑊𝑛,𝑚  – weight corresponding to input n 

for neuron m [36]. 

2.2. Improving The Results 

To improve the results obtained from the 
training procedure: 

1. The network can be reinitialized and trained 
multiple times to explore different solutions. 

2. Increasing the number of neurons in the 
hidden layer can improve the network's flexibility 
and optimization potential, but it should be done 
incrementally to avoid potential issues. 

3. Using a larger training dataset enhances the 
network's generalization capabilities and 
improves efficiency when dealing with new data 
[36]. 

2.3. Data Training 

In the batch training method, the weights and 
biases of a neural network are updated after 
applying all the members of the training set. The 
slopes calculated for each input are added 
together to determine the final updates for the 
weights and biases. 

Within the context of exploratory techniques, 
the algorithms focus on the efficiency analysis of 
standard reduction algorithms. Fast post-
propagation algorithms are employed, making use 
of standard numerical optimization techniques. 
This section examines three numerical 
optimization techniques: 

1. Combined gradient: This technique 
encompasses functions such as trancgp, traincgf, 
traincgb, and trainscg. 

2. Pseudo-Newton: This technique includes 
functions such as trainoss and trainbfg. 

3. Levenberg-Marquardt: This technique 
employs the trainlm method. 

These numerical optimization techniques are 
applied to improve the training process of the 
neural network. Each method utilizes different 
approaches to update the weights and biases, 
thereby enhancing the network's ability to learn 
and generalize from the training data. Table 1 
shows some commonly used functions in various 
problems [36]. 

Table 1. Training functions [36] 

Acronym Algorithm Description 

LM Levenberg-Marquardt trainlm 

BFG BFGS Quasi-Newton trainbfg 

RP Resilient Backpropagation trainrp 

SCG Scaled Conjugate Gradient trainscg 

CGB 
Conjugate Gradient with 

Powell/Beale Restarts 
traincgb 

CGF 
Fletcher-Powell Conjugate 

Gradient 
traincgf 

CGP 
Polak-Ribiére Conjugate 

Gradient 
traincgp 

OSS One Step Secant trainoss 

GDX 
Variable Learning Rate 

Backpropagation 
traingdx 

file:///C:/Program%20Files/MATLAB/R2017b/help/nnet/ref/trainlm.html
file:///C:/Program%20Files/MATLAB/R2017b/help/nnet/ref/trainbfg.html
file:///C:/Program%20Files/MATLAB/R2017b/help/nnet/ref/trainrp.html
file:///C:/Program%20Files/MATLAB/R2017b/help/nnet/ref/trainscg.html
file:///C:/Program%20Files/MATLAB/R2017b/help/nnet/ref/traincgb.html
file:///C:/Program%20Files/MATLAB/R2017b/help/nnet/ref/traincgf.html
file:///C:/Program%20Files/MATLAB/R2017b/help/nnet/ref/traincgp.html
file:///C:/Program%20Files/MATLAB/R2017b/help/nnet/ref/trainoss.html
file:///C:/Program%20Files/MATLAB/R2017b/help/nnet/ref/traingdx.html
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2.4. Determining The Number Of Neurons 
Among The Layers 

To determine the appropriate number of 
neurons in the hidden layer, extensive research 
has been conducted, resulting in suggested values. 
These values serve to avoid relying solely on trial 
and error methods for finding the optimal 
number. Table 2 shows the various methods 
available for determining the number of neurons 
in the hidden layer. In this table, 𝑁𝑖  represents the 
number of inputs, while 𝑁0 represents the number 
of outputs in the model. 

Table 2. Dimension calculation relationships between 
layers 

Hecht-Nielse [29] ≤  2 ×  𝑁𝑖 +  1 

Ripley [30] 
𝑁𝑖 +  𝑁𝑜

2
 

Paola [31] 
2 + 𝑁𝑜 × 𝑁𝑖 + 0.5 𝑁𝑜 × (𝑁𝑜

2 + 𝑁𝑖) − 3

𝑁𝑖  +  𝑁𝑜

 

Wan [32] 2
𝑁𝑖

3
 

Masters [33] √𝑁𝑖  ×  𝑁𝑜 

Kaastra and Boyd 
Kanellopoulos and 
Wilkinson [34,35] 

2𝑁𝑖 

2.5. Determining The Number Of Neurons 
Among The Layers 

The gradient descent algorithm is generally 
known for being slow, as it requires a small 
learning rate to ensure stable learning. In contrast, 
the momentum method is often faster than the 
simple gradient descent method, as it allows for a 
higher learning rate while maintaining stability. 
However, even the momentum method can be too 
slow for certain problems. It tends to work well 
with incremental learning methods. For small and 
medium-sized networks with sufficient memory, 
the Levenberg-Marquardt learning function is 
commonly used. In cases where memory is 
limited, there are other faster algorithms 
available. In the case of larger networks, trainscg 
or trainrp can be employed. 

Multi-layer networks possess the remarkable 
ability to perform both linear and non-linear 
calculations, making them well-suited for 
accurately estimating desired functions. These 
networks can even surpass the limitations of 
perceptrons. It's important to note that, in theory, 
once a network is trained, it should be capable of 
correctly performing the related operations. 
However, it should also be acknowledged that 
achieving the optimal solution is not guaranteed in 
every situation. 

3. PROJECT INTRODUCTION 

Tabriz Metro Line 2 is a key urban train route 
within the Tabriz metro system. This route spans 
approximately 22.4 km and comprises 22 stations. 
It originates from the Qaramelk and terminates at 
the Tabriz International Exhibition. Based on the 
studies conducted in this area, fine-grained 
alluvial and silty sediments have been observed. 
Among these fine-grained alluvial layers, there are 
also sandy deposits, but the tunnel route mostly 
passes through the fine-grained alluvial 
sediments. 

3.1. Geotechnical Parameters Between Station 
S01 And Station S03 

In this section, the geotechnical parameters for 
the design of soil and rock layers along the length 
of the route are presented. These parameters are 
determined based on observations made during 
borehole drilling, examination of field and 
laboratory test results, consideration of 
geotechnical studies conducted on projects 
similar to the scope of the current project, and 
engineering judgment. The division of the route 
from station S01 to station S03 is determined by 
factors such as the distance between boreholes, 
type of subsurface layers, underground water 
level, SPT numbers, and the variety of subsurface 
layers. You can find a summary of this division in 
Table 3. Additionally, Fig. 2 showcases the route 
investigated in this study, highlighted in red. 

Table 3. Geotechnical parameters from station S01 to station S03 [37] 

02+550 ~ 03+350 03+350 ~ 04+100 04+100 ~ 04+550 04+550 ~ 05+050 Mileage 

Alternation of coarse-
grained (SM) and fine-
grained (ML) alluvium 

Alternation of coarse-grained 
(SM) and fine-grained 

alluvium (ML & CL) 

Fine-grained 
alluvium 

 (ML & CL) 

Alternation of coarse-grained 
(SM) and fine-grained 

alluvium (ML & CL) 
Dominant type of soil 

1.70 ~ 1.80 1.75 ~ 1.80 1.65 ~ 1.75 1.70 ~ 1.80 Specific dry weight (gr/cm2) 

200 ~ 350 300 ~ 500 150 ~ 250 300 ~ 400 Cohesion C (KPa) 

30 ~ 32 26 ~ 28 26 ~ 28 25 ~ 27 Internal friction angle φ 

50 ~ 60 40 ~ 50 35 ~ 45 40 ~ 50 Elastic modulus (MPa) 

19.0 ~ 22.5 15.0 ~ 19.0 13.0 ~ 17.0 15.0 ~ 19.0 shear modulus (MPa) 

10-4~ 10-3
 10−5~ 10−4 10−5 ~ 10−4 10-6 ~ 10-5 

Permeability coefficient 
(cm/s) 
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Fig. 2. The investigated route from line 2 of the city train. 

4. DATA PREPROCESSING 

Raw data often encounter challenges such as 
noise, bias, significant variations in dynamic 

range, and sampling. Utilizing raw data in its 
original form can weaken subsequent designs. In 
essence, data preprocessing encompasses all the 
transformations applied to raw data to make it 
more manageable and effective for subsequent 
processing, such as estimation. Various tools and 
methods exist for data preprocessing, with 
normalization being one notable example. This 
method involves converting the data into a new 
format with a different range or suitable 
distribution. Tables 4 and 5 provide the maximum, 
minimum, average, standard deviation, and 
variance values for each parameter. It's important 
to note that these values were obtained before 
normalization. 

Table 4. Statistical values related to the investigated variables 

Descriptive Statistics 

 
Minimum Maximum Average standard deviation Variance 

Statistic Statistic Statistic Std. Error Statistic Statistic 

Torque (Mn. m) 1.10 5.30 4.1347 0.0137 0.3474 0.121 

Trust force (KN) 7195.00 36265.00 22371.0200 186.8675 4734.7981 22418313.642 

Speed (
mm

min
) 5.00 55.00 33.3006 0.1884 4.7746 22.797 

Friction angle (°) 5.04 28.48 15.5879 0.2291 5.8062 33.712 

Cohesion (KPa) 11.19 58.93 41.3564 0.4494 11.3885 129.699 

Special weight (
gr

cm3
) 1.82 1.97 1.8967 0.0017 0.045 0.002 

Shear modulus (
kg

cm2
) 28.52 155.2 71.4264 1.0888 27.5891 761.159 

Water table (m) 11.00 17.80 14.6639 0.0771 1.9554 3.824 

Penetration rate (
mm

rot
) 4.00 36.00 19.0961 0.1443 3.6576 13.378 

Table 5: Statistical values related to the normalized variables studied 

Descriptive Statistics 

 
Minimum Maximum Average standard deviation Variance 

Statistic Statistic Statistic Std. Error Statistic Statistic 

Torque (𝑀𝑛. 𝑚) 0 1 0.7226 0.00327 0.08273 0.007 

Trust force (𝐾𝑁) 0 1 0.5221 0.00643 0.16288 0.0027 

Speed (
𝑚𝑚

𝑚𝑖𝑛
) 0 1 0.566 0.00977 0.09549 0.009 

Friction angle (°) 0 1 0.45 0.00977 0.24763 0.061 

Cohesion (𝐾𝑃𝑎) 0 1 0.6319 0.00942 0.2386 0.057 

Special weight (
𝑔𝑟

𝑐𝑚3
) 0 1 0.5271 0.01224 0.31009 0.096 

Shear modulus (
𝑘𝑔

𝑐𝑚2
) 0 1 0.3387 0.0086 0.21780 0.047 

Water table (𝑚) 0 1 0.5388 0.01135 0.28756 0.083 

Penetration rate (
𝑚𝑚

𝑟𝑜𝑡
) 0 1 0.4718 0.00451 0.1143 0.013 

5. THE RESULTS OF NEURAL NETWORKS 

Matlab utilizes neural networks for clustering, 
estimation, and prediction of various problems. 
This method is categorized as a non-linear 
approach. In this particular study, the back-feed 
algorithm, a subset of the back-propagation 
algorithms, was employed. The newff command 

line function is utilized for this purpose. A single-
layer neural network with multiple neurons is 
utilized to address the non-linear problem of 
penetration rate. The tansig transfer function is 
used for the intermediate layer, and the purlin 
function is used for the output layer. 

The neural network consists of 8 inputs and 1 
output. Normalization of the data is not required, 
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and this step is handled by the mapminmax 
function. After the data pre-processing stage, it is 
time to train the network. In this modeling 
approach, 70% of the data is allocated for training, 
15% for validation, and the remaining 15% for 
network testing. Once the training and forecasting 
phases have been completed for each of these 
partitions, the error function and the regression 
coefficient (or correlation coefficient) are 
calculated for each one. The selection of the best 
architecture is typically based on the lowest mean 
square error. Alternative error functions such as 
SSE and RMSE can also be utilized in neural 
networks. It is worth noting that after each 
execution, the existing network should be closed. 
Executing additional training sessions on the same 
network may lead to overfitting, compromising 
the reliability of the results. Before running the 
program, it is necessary to determine the number 
of neurons in each layer. To assist with this task, 
Table 2 can be consulted to calculate the number 
of intermediate layers, and the results can be 
recorded in Table 6. 

Table 6. The number of neurons in each interlayer 

≤  17 ≤  2 × 𝑁𝑖 +  1 

4.5 
𝑁𝑖 + 𝑁𝑜

2
 

1.2 
2 + 𝑁𝑜 × 𝑁𝑖 +  0.5 𝑁𝑜 × (𝑁𝑜

2  + 𝑁𝑖)  −  3

𝑁𝑖  + 𝑁𝑜

 

5.33 2
𝑁𝑖

3
 

2.82 √𝑁𝑖  ×  𝑁𝑜 

16 2𝑁𝑖  

 

In order to assess the efficiency of each 
architecture, two parameters, namely mean 
square error and correlation coefficient, have 
been utilized. The selection of the best 
architecture is determined by the lowest value of 
the mean square error. It should be noted that 
alternative error functions can also be employed 
in neural networks, such as root mean square 
error or sum of squared differences. For this 
investigation, 14 models with varying numbers of 
interlayers were selected. As depicted in Table 7, 
the architecture (1-12-8) demonstrates the lowest 
error among the other models. This particular 
model exhibits a mean square error value of 1.630 
and a coefficient of determination of 0.932. The 
mean square error is a significant factor in the 
selection of the optimal topology. The diagram in 
Figure 3 shows the predicted and actual values 
obtained from the device and the correlation 
between them. Fig. 4 shows the variation in 
penetration rate changes versus speed, thrust 
force and torque. 

Among the geotechnical parameters, cohesion 
and friction angle play the most influential roles in 

the penetration rate within this system. An 
increase in both cohesion and friction angle leads 
to a significant reduction in the penetration rate. 
On the other hand, changes in soil density have a 
relatively negligible impact on the penetration 
rate. Thus, soil density is considered to have the 
least effect among the geotechnical parameters on 
the penetration rate (Fig. 5). 

As the shear modulus increases, the 
penetration rate also increases, but this occurs 
with a relatively gradual decline. Furthermore, as 
the underground water parameter increases 
(specifically, the water height above the tunnel), 
the device becomes capable of penetrating deeper 
into the soil (Fig. 6). 

 

 
Fig. 3. Graph of correlation values for four modes of 

training, validation, test, and whole sample. 

Table 7. The results obtained from different implemented 
models 

No. 
Network 

architecture 
R 

(Train) 
R 

(Test) 
R 

(All) 
MSE 

1 1-3-8 0.917 0.922 0.916 2.846 

2 1-4-8 0.904 0.914 0.908 1.912 

3 1-5-8 0.904 0.915 0.914 1.731 

4 1-6-8 0.920 0.914 0.919 1.726 

5 1-7-8 0.930 0.904 0.922 2.449 

6 1-8-8 0.931 0.876 0.916 2.701 

7 1-9-8 0.909 0.870 0.889 3.061 

8 1-10-8 0.930 0.908 0.926 1.983 

9 1-11-8 0.920 0.887 0.906 3.284 

10 1-12-8 0.948 0.903 0.937 2.057 

11 1-13-8 0.944 0.885 0.927 2.659 

12 1-14-8 0.946 0.903 0.934 1.630 

13 1-15-8 0.944 0.903 0.925 3.003 

14 1-16-8 0.944 0.867 0.928 2.781 
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(a) 

 
(b) 

 
(c) 

Fig. 4. (a): variation of torque with penetration rate; (b): 
Thrust force changes with penetration rate (c): velocity 
changes with penetration rate. 
 

 
Fig. 5. Upper right: the amount of friction angle changes 
with penetration rate; Top left: the amount of adhesion 
changes with penetration rate; Bottom: rate of density 
changes with penetration rate 

 
Fig. 6. Right: changes of shear modulus with 

penetration rate; Left: changes in water level with 

penetration rate. 

6. CONCLUSIONS 

The penetration rate is the most crucial factor 
in assessing the efficiency of a full-section 
excavation machine. For tunnel excavation in 
urban environments, generating the appropriate 
torque is one of the primary performance factors 
for the TBM (Tunnel Boring Machine) device. The 
torque force propels the TBM forward and rotates 
the cutter head. The device's torque is directly 
linked to the power it possesses in its gearbox. As 
the torque of the device increases, the penetration 
rate decreases. Thrust force, as a factor that affects 
torque and reduces speed, indirectly impacts the 
penetration rate's value. 

To ensure the most accurate estimation of the 
penetration rate, this study utilizes state-of-the-
art and intelligent computing methods. The 
examined parameters of the device include 
torque, thrust force, and rotation speed of the 
cutter head. Geotechnical parameters investigated 
consist of internal friction angle, adhesion, wet 
specific gravity, shear modulus, and stability level. 
Analyzing the results obtained from various 
methods reveals that among the machine 
parameters, speed has the most significant effect 
on the penetration rate. This effect is direct and 
positive, meaning that as the cutter head's 
rotation speed increases, the torque force 
decreases. Regarding geotechnical parameters, 
the underground water parameter exerts the most 
profound influence on the penetration rate. 
Increasing its value leads to higher penetration 
rates. Adhesion and internal friction angle have a 
crucial impact on reducing the penetration rate 
within this system. As the soil's specific gravity 
rises, the penetration rate marginally decreases. 
Therefore, specific gravity has the least impact 
among the geotechnical parameters on the 
penetration rate. As for the modulus of elasticity, 
an increase results in a gradual decrease in the 
penetration rate. 

 Out of the available methods, the neural 
network demonstrates the strongest ability to 
predict the penetration rate. Investigations 
indicate that among the machine parameters, 
speed holds the greatest influence, while thrust 
force possesses the least impact. 
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