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Abstract

Pavement performance models are considered a key element in pavement management
systems since they can predict the future condition of pavements using historical data.
Several indicators are used to evaluate the condition of pavements (such as the pavement
condition index, rutting depth, and cracking severity), and the international roughness
index (IRI), which is the most widely employed worldwide. This study aimed to develop
an accurate IRI prediction model. Ten prediction methods were trained on a dataset of
35 independent variables. The performance of the methods was compared, and the light
gradient boosting machine was identified as the best-performing method for IRI prediction.
Then, the SHAP was synchronized with the best-performing method to prioritize variables
based on their relative influence on IRI. The results suggested that initial IRI, mean annual
temperature, and the duration between data collections had the strongest relative influence
on IRI prediction. Another objective of this study was to determine the optimal uncertainty
model for IRI prediction. In this regard, 12 uncertainty models were developed based on
different conformal prediction methods. Gray relational analysis was performed to identify
the optimal uncertainty model. The results showed that Minmax/80 was the optimal
uncertainty model for IRI prediction, with an effective coverage of 93.4% and an average
interval width of 0.256 m/km. Finally, a further analysis was performed on the outcomes
of the optimal uncertainty model, and initial IRI, duration, annual precipitation, and a few
distress parameters were identified as uncertain. The results of the framework indicate in
which situations the predicted IRI may be unreliable.

Keywords: international roughness index; ensemble learning; conformal prediction
interval; uncertainty; gray relational analysis

1. Introduction
Transportation infrastructure is an essential part of mobility and economic develop-

ment in modern societies, being a pillar of the economy [1]. Pavement, as a component of
transportation infrastructure, plays a significant role in roadway safety and performance.
In the United States alone, the paved road infrastructure covers a distance of approximately
5 million kilometers, enabling the transport of people and large volumes of freight [2].
While pavements are an unavoidable aspect of infrastructure, they deteriorate over time
due to various reasons, such as aging, increasing traffic volumes, and severe weather events.
Therefore, it is essential to keep pavements in operational condition. Still, in 2023, around
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39% of roads in the United States were in poor or mediocre condition, and only 45% were
classified as good condition. Such inappropriate road conditions imposed drivers with
additional operational costs and driving on deteriorated pavements costs around $1400 for
each driver annually due to vehicle operating costs and lost time [3]. In 2023, the number
of fatalities due to vehicle traffic crashes was around 41 thousand people, and one of the
reasons could be the poor condition of pavements [4]. Improving pavement conditions can
address these issues.

Maintenance and rehabilitation (M&R) practices are required to maintain pavements in
acceptable performance conditions. Effective M&R planning is based on precise forecasting of
future pavement conditions, achievable through the use of pavement condition indicators [5].
Global pavement surface roughness is one of the most widely used indicators, including
the international roughness index (IRI), and it has been extensively utilized in previous
research to predict the IRI in the planning horizon of M&R scheduling. That is, the M&R
scheduling models minimize the IRI of pavement sections in a planning horizon [6]. Due to
the importance of the IRI, many research papers have employed various models to predict its
trend over time [7]. Although various IRI prediction models have been developed in previous
studies, IRI prediction uncertainty modeling has not received enough attention. This study
applies conformal prediction intervals to cover this research gap.

The primary objectives of this study are as follows:

• Accurate IRI prediction: all the vital variables are applied in the modeling; ten predic-
tion methods (i.e., ensemble learning, machine learning, and deep learning methods)
are used to identify the best-performing prediction method for IRI prediction.

• Identify the top determinant of IRI prediction: After detecting the best-performing
prediction method, it is synchronized with an interpretation technique to capture the
relative influence of variables on IRI.

• Optimal uncertainty model: Various conformal prediction methods at different target
coverage levels are compared by a multi-criteria decision-making method to detect
the optimal uncertainty model.

• Uncertainty parameters in IRI prediction: A further analysis is performed on the results of
the optimal uncertainty model to determine the uncertain parameters in IRI prediction.

2. Literature Review
Many prediction models have been applied to predict IRI. Most of these models

involve several factors to investigate their influence on pavement roughness. Age is one of
the primary factors widely used in previous studies. Al-Suleiman and Shiyab [8] presented
two IRI prediction models based on regression analysis for slow and fast traffic lanes
separately, with pavement age as the primary independent variable. The coefficient of
determination (R2) was calculated at 0.80 for the slow lane model and 0.61 for the fast lane
model. The results suggested that there is a strong correlation between age and IRI of
pavement sections. Similarly, Tsunokawa and Schofer [9] proposed an IRI model with the
initial IRI and pavement age as independent variables. IRI modeling that only uses initial
conditions and pavement age may not yield the most accurate predictions. Many studies
have incorporated traffic loads and structural features as additional parameters to improve
IRI prediction models.

Traffic-associated variables like equivalent single axle load (ESAL) and cumulative
ESAL (CESAL) have been commonly used in past investigations of IRI prediction mod-
els [10–16]. Along with the traffic-associated variables, structural characteristics have also
been considered as an independent variable using structural number (SN), which has
emerged as a major factor in many IRI prediction models [10–12,14,15]. For example, Choi
et al. [11] proposed IRI prediction models based on CESAL, asphalt content, and SN using
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multiple linear regression (MLR) and a backpropagation neural network. The MLR model
had a correlation coefficient (R) of 0.46, and the backpropagation neural network R was
0.87, indicating a higher level of predictive performance.

In another study, Jaafar and Fahmi [14] collected data from 34 long-term pavement
performance (LTPP) observations and applied initial IRI, pavement age, ESAL, construction
number, and SN as independent variables to develop two IRI prediction models. They
applied MLR and artificial neural network (ANN) methods to develop the models and
achieved R2 values of 0.25 and 0.80, respectively.

Furthermore, in addition to structural and traffic parameters, climatic characteris-
tics have also been included in IRI modeling. Common climatic parameters used in IRI
modeling are average annual temperature, the number of freeze–thaw cycles per year,
freezing index, total annual snowfall, and annual precipitation [12,13,16]. For instance,
using average annual precipitation, as well as ESAL and SN, Albuquerque and Nuñez [12]
developed two IRI models using MLR and achieved an R2 of 0.87. A regression-based
IRI model for flexible pavements was developed by Khattak et al. [13] using climatic pa-
rameters (i.e., precipitation and temperature), as well as initial IRI, CESAL, and pavement
thickness, on a dataset of 623 observations. The developed model reached an R2 of 0.47.
Dalla Rosa et al. [17] developed a regression-based IRI prediction model that included
climatic conditions, treatment type, subgrade properties, traffic loadings, and pavement
type as independent variables. The root mean square error (RMSE) was 0.21 m/km.

Multiple studies have highlighted that pavement distress ought to be included as an
independent variable in IRI modeling [18–21]. Hence, some studies considered pavement
distress variables in the IRI prediction models. For example, Owolabi et al. [19] developed
an IRI prediction function with multiple linear regression (MLR) solely with three distress
variables, including rut depth, patches, and longitudinal cracks length.

Although some research has focused strictly on pavement distress in their studies, others
have included other attributes in addition to the distress indicators for the IRI model. For
example, Abdelaziz et al. [21] combined initial IRI, pavement age, along with three pavement
distress indicators—fatigue cracking, transverse cracking, and the standard deviation of rut
depth—to create two IRI models, one using MLR and the other using ANN. The R2 values for
the two models were 0.57 for the MLR-based model and 0.75 for the ANN model.

As can be seen from the above-mentioned studies, MLR and ANN have been widely
used algorithms for IRI prediction. However, there are other machine learning algorithms
that can outperform MLR and ANN when comparing prediction accuracy. To this end,
researchers have begun to apply other prediction techniques to improve prediction per-
formance. For example, Marcelino et al. [22] used random forest regression to develop a
long-term IRI prediction framework to predict IRI for up to 10 years. The model included
climatic, structural, and traffic data, resulting in prediction errors of 6.95%. In another
publication, Marcelino et al. [23] used the AdaBoost algorithm to develop yet another IRI
model for flexible pavements, considering the variables pavement thickness, average an-
nual daily traffic, SN, and climate, including average annual temperature and precipitation.
The AdaBoost-based model resulted in the highest predictive accuracy with an R2 value of
0.986. Damirchilo et al. [24] applied extreme gradient boosting, random forest regression
(RFR), and support vector machine (SVM) algorithms, which produced R2 of 0.70, 0.66, and
0.44, respectively. The independent variables of their models included ESAL, pavement
age, precipitation, level of freeze–thaw days, freeze index, and the number of hot days for
IRI prediction.

More in-depth literature review shows that only a select number of input features
were used in earlier research studies to avoid increasing model complexity. Although the
integration of all significant categorized variables, such as stripping of initial IRI, lane
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width, traffic loading, structure properties of links in the models, climate conditions, and
pavement distresses, is needed, the previous models reported in the literature have rarely
employed all of these variables simultaneously. To address this, this study aims to collect
a comprehensive dataset including all the vital parameters to maximize the performance
of IRI prediction models. Also, there are powerful machine learning models whose appli-
cations to predict IRI have been limited, such as categorical boosting and light gradient
boosting machine. Accordingly, this study employs many machine learning algorithms and
compares their prediction performance using various performance indicators. Moreover, to
the best of the authors’ knowledge, all the previous studies applied deterministic prediction
models to predict IRI, and uncertainty has not been modeled in this research domain. To
address this, this study applied a conformal prediction interval framework to investigate
the uncertainty in IRI prediction and identify which factors can increase such uncertainty.
Unlike previous IRI prediction models, the proposed uncertainty framework can indicate
which data observations and in which situations the predicted IRI may be unreliable. This
feature improves the interpretability and practical usefulness of the model by allowing
decision makers to assess the trustworthiness of individual predictions.

3. Methodology
In this section, the applied dataset for the modeling is first described. Then, the

prediction methods are briefly introduced. Subsequently, the performance metrics used to
identify the best-performing prediction technique are presented. Afterward, the uncertainty
methods are described. Finally, the further analysis used to detect uncertain parameters is
described. The methodology flowchart is shown in Figure 1.

Figure 1. The methodology flowchart.

3.1. Datasets

The long-term pavement performance (LTPP) database, containing condition data
for 526 flexible pavement sections in the 50 states of the United States, supplied the data
required to build the IRI-prediction model. The flexible pavement sections are from intercity
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highways, which are roads that physically connect cities, but are outside the urban centers
of those cities.

One of the goals of this research is to identify which features are most effective in
predicting IRI over time. The input variables selected spanned multiple variable categories,
including initial pavement condition, pavement age, lane width, traffic data, structural data,
climate characteristics, and pavement surface distress. Traffic loading was represented by
cumulative equivalent single axle loads (CESAL), and the structural data was represented
by structural number (SN). We selected these variables for two reasons: first, they have
been used in previous studies (please see the literature review), though not all together;
second, they represent all the available variables in the LTPP dataset.

Climatic features included in the model were average annual temperature, annual
freezing index, freeze–thaw cycles in each year, and annual amounts of precipitation.
Furthermore, the statistical value of parameters is presented in Table 1. In this table,
the final row represents the statistical summary of the dependent variable (IRI) used for
developing and evaluating prediction models. Although IRI is the predicted outcome,
including its descriptive statistics in the methodology section is essential for understanding
the characteristics of the dataset and the modeling context.

Table 1. Statistical value of parameters.

Parameters
Statistical Value

Min Max Mean StD

Initial IRI (m/km) 0.54 3.57 1.13 0.47
Structural number 0 10 4.63 1.6
Equivalent single axle loads (ESALs) (number of loads) 0 4,103,546.08 391,899.25 513,441.69
Surface area of low severity alligator cracking (m2) 0 488 16.16 52.14
Surface area of medium severity alligator cracking (m2) 0 218.8 4.56 22.1
Surface area of high severity alligator cracking (m2) 0 411.5 2.91 28.02
Length of low severity longitudinal cracking in the wheel path (m) 0 161.7 4.12 16.42
Length of medium severity longitudinal cracking in the wheel path (m) 0 61.7 0.99 6.18
Length of high severity longitudinal cracking in the wheel path (m) 0 4.4 0.01 0.2
Length of low severity longitudinal cracking in the non-wheel path (m) 0 329.1 37.62 72.47
Length of medium severity longitudinal cracking in the non-wheel path (m) 0 305 11.56 38.01
Length of high severity longitudinal cracking in the non-wheel path (m) 0 305 6.03 31.82
Length of sealed low severity longitudinal cracks in the non-wheel path (m) 0 329.1 1.44 17.67
Length of sealed medium severity longitudinal cracks in the non-wheel path (m) 0 7.2 0.04 0.48
Number of low severity transverse cracks 0 152 5.43 17.28
Number of medium severity transverse cracks 0 62 1.36 6.23
Number of high severity transverse cracks 0 12 0.2 1
Length of low severity transverse cracks (m) 0 134 4.44 14.68
Length of medium severity transverse cracks (m) 0 140.5 2.32 10.21
Length of high severity transverse cracks (m) 0 27.7 0.55 2.68
Length of low severity sealed transverse cracks (m) 0 106 0.33 4.79
Length of medium severity sealed transverse cracks (m) 0 6.5 0.03 0.42
Length of high severity sealed transverse cracks (m) 0 7 0.02 0.33
Area of binder bleeding (bleeding) (m2) 0 320.3 20.9 63.73
Surface degradation due to aggregate loss (raveling) (m2) 0 564.3 24.4 93.66
Number of occurrences where water/fines are ejected under traffic loads (pumping) 0 10 0.13 0.78
Total length of pavement affected by pumping (m) 0 186.80 1.78 14.91
Width of the surveyed pavement section (m) 3.00 4.3 3.63 0.17
Total cracked length in the wheel path (m) 0 305 45.04 83.92
Length of transverse cracks longer than 183 cm (often used as a threshold for major
cracks) (m) 0 114.6 3.23 12.67

Total annual precipitation (mm/year) 122.3 1923.4 902.86 447.67
Mean annual temperature (◦C) 1.3 24.4 14.20 6.12
Annual freezing index (cumulative degree-days below freezing) (◦C.days) 0 1744 275.43 422.50
Number of freeze–thaw cycles per year 0 179 67.95 41.17
The duration between data collections (days) 106 2651 728.27 476.94

IRI (m/km) 0.59 4.37 1.26 0.56

In total, 35 independent variables were used to build the IRI prediction model. We
extracted data from the LTPP database of pavement sections with complete lists of the
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36 variables for which the sections received no maintenance and rehabilitation (M&R) treatments.
The data reviewed represents a wide range of observation periods on pavement sections from
106 days to 7 years of IRI measurements [25]. Table 1 summarizes descriptive statistics including
the maximum, minimum, average, and standard deviation for selected variables.

From this dataset, we developed two sample sets to construct the models: the training
set and the testing set. The training set was applied to train and tune the machine learning
algorithms. The testing set used pavement section data that had not been seen in the model
in the training process, and they were applied to evaluate the predictive performance of
the developed models [26]. In this study, we randomly split the data sets into 80% training
and 20% testing data. Further, we applied Optuna and k-fold cross-validation (considering
k = 5) to tune the hyperparameters of machine learning techniques.

3.2. Prediction Techniques

Ten prediction techniques are applied to predict IRI and identify the best-performing
technique on IRI prediction. These methods are briefly introduced in this section.

3.2.1. K-Nearest Neighbor

K-nearest neighbor (KNN) is a black-box machine learning method that has been
widely employed for modeling and prediction since the 1970s. This method estimates the
dependent variable of a given observation in testing data based on the dependent variable
of similar observations in the training set. This method identifies K similar observations
based on their independent variables. That is, the nearest observations are determined
by a distance function and the values of independent variables. Finally, the K nearest
observations are selected, and their dependent variables are used to predict the dependent
variable of the testing data [27].

3.2.2. Linear Regression

Linear regression (LR) is a common and well-known statistical method typically
used to measure relationships between independent (input) variables and a dependent
(output) variable. In the last several years, LR has gained much favor as a machine-learning
algorithm [28]. LR aims to generate linear models whereby the dependent variable (y) is
represented as a linear combination of any number of independent variables (x). On the one
hand, when the model has one independent variable, we label it simple linear regression,
and if we have two or more independent variables to consider, we have multiple linear
regression. The simple linear regression model can be generally represented as:

y = b0 + b1x1. (1)

Equation (1) is considered the mathematical description of a straight line; b0 is the
y-intercept and b1 designates the slope of the line and b1 represents the slope of the line.

If we think about multiple linear regression, we can see that the model not just extends
from a line to a plane, but also to a hyperplane in more than two dimensions. The general
representation of the multiple linear regression model is:

y = b0 + b1x1 + b2x2 + . . . + bnxn (2)

In Equation (2), the model consists of n predictor variables, represented as x1, x2, . . . , xn.

3.2.3. Multi-Layer Perceptron

The multi-layer perceptron (MLP) can be defined as a deep learning method that
introduces a complex architecture in artificial neural networks [29]. MLPs are mainly used
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for supervised learning and can be thought of as a feedforward neural network, which
maps a single or a set of inputs to an output or a set of outputs. The MLP consists of
multiple layers of perceptrons across its architecture; the input nodes of each layer are
connected, like a directed graph.

In the MLP, both the adaline (adaptive linear neuron) rule and the perceptron rule have
been used to train single feedforward neural networks, where the connections (weights) to
the units are adjusted according to a unit function applied to a linearization of the inputs.
An MLP is a fully connected neural network, typically including three types of layers:
input, hidden, and output. The input layer receives the information and transfers it to the
hidden layer. The hidden layer(s) apply non-linear transformations to the inputs using
activation functions. The output layer produces the final prediction [30].

3.2.4. Decision Tree

Decision tree regression is a type of supervised learning that predicts continuous
numerical outcomes based on learned feature representations in a tree structure. It works
by following a series of recursive binary judgements about the feature values, whereby
each judgement continues to refine subsets of the dataset, going from larger, increasingly
smaller, and homogenous subsets until the final predictive output is a continuous variable.
This process allows the model to predict a meaningful output for the numeric continuous
variable according to the learning experience of the model [31].

The tree is made up of internal decision nodes and terminal leaves. With an internal
node representing a split based on either a single feature or the two levels of the feature,
while the topmost internal node, called a root node, is the node based on the feature that
best predicts the dependent variable. The search is carried out by top-down recursive
partitioning, where the splits try to minimize the variance of the whole dataset into subsets.
Specifically, the metric of measurement that is often used in terms of variance is the number
of values (standard deviation) represented through partitions: a zero standard deviation
indicates the subset is homogeneous, while larger groups are more heterogeneous [32].

3.2.5. Random Forest

The random forest (RF) algorithm is an ensemble method that can be utilized for
classification and regression problems. It generates a predictive model by combining
multiple decision trees as its base learners [33]. The method uses a technique called
bootstrap aggregating, or bagging, in order to produce the model.

With bagging, for the original training dataset X, the algorithm samples B random
samples from X, with replacement, to form B training datasets. Each of those B training
datasets is then used to train a single decision tree. These decision trees are generated in
parallel and do not share any information in the training process. After the training phase
is complete, the ensemble of trees may be used to predict unseen instances of “x” created
based on outputs from each of the B trees combined with the following equation:

f̂ =
1
B

B

∑
b=1

fb

(
x́) (3)

Decision trees independently have high variance, but when combined in a random
forest, the variance of the model is much lower. In regression problems, random forest uses
the average value of all of the predictions from the trees to generate the final output [34].

3.2.6. Adaptive Boosting

Adaptive boosting (AdaB) is an ensemble learning method that improves the pre-
diction performance by combining multiple weak learners into a single strong predictor.
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Usually, AdaB only uses decision stumps—single-level decision trees—as weak learn-
ers [35]. The algorithm assigns weights to instances of the training samples according to
how difficult they are to predict. That is, the harder to predict samples are assigned a higher
weight, while correctly classified samples are assigned a lower weight. This provides the
model with the ability to focus on the more difficult cases more than other samples in each
iteration of training.

AdaB for regression is a meta-estimator. It starts by fitting a base regressor onto the original
dataset, and then fits additional regressors iteratively to the data. Each time a new regressor is
fitted, the model will update the weights of the training samples, depending on the prediction
errors for the previous regressor. This means that the model focuses on the hardest examples
with the fitted new regressor to improve the model’s predictive performance.

3.2.7. Gradient Boosting

Gradient boosting (GB) is another ensemble learning method used for prediction
purposes. Gradient boosting uses the boosting paradigm, where multiple weak learners
(usually decision trees) are sequentially combined to produce a stronger predictive model.
A simple first tree is built, often a one-node stump. The models of each additional tree are
trained on the previous tree ensemble’s errors (residuals).

A learning rate is used to regulate the impact of each tree on the model’s final predic-
tion, which lowers the impact of each individual tree on the correction. The approach is
to add trees over time to tune the model. This process is continued until a predetermined
number of iterations or an improvement in predictive accuracy is no longer observed [36].

3.2.8. Light Gradient Boosting

Light gradient boosting (LGB) is another ensemble learning method applied to predict
IRI. Like other ensemble learning techniques, LGB produces a given number of weak
learners and syncs them to develop a more accurate prediction model. This method is an
updated version of GB, which was introduced by Microsoft. LGBM is an efficient method,
and it can reduce memory usage by parallel learning. A leaf-wise leaf growth strategy is
used by LGB, which controls the depth growth of decision trees. In this strategy, multiple
leaves at the same depth can be split simultaneously, enabling multi-threaded optimization
during training [37].

3.2.9. Extreme Gradient Boosting

Extreme gradient boosting (XGB) is a powerful supervised learning algorithm for
regression problems in machine learning [38]. It is computationally efficient and scalable,
and provides much higher prediction ability than normal decision trees, while it is less
interpretable. It works by learning a series of base learners, normally decision trees, to
build a strong ensemble.

The objective function of XGB has two pieces: a loss function and a regularization
term. The loss function measures the difference between predicted target values and actual
target values. The second piece, regularization, penalizes model complexity to minimize
overfitting. XGBoost iteratively minimizes its objective function during training, allowing
it to create successive base learners to strengthen its prediction ability.

3.2.10. Categorical Boosting

Categorical boosting (CatB) is another efficient and powerful ensemble learning
method applied in this study to predict IRI. CatB uses Bayesian estimators to reduce
the likelihood of overfitting, and it replaces categorical variables with binary variables
in the training phase, which can reduce computational complexity. Like other ensemble
learning methods, CatB generates various decision trees and combines their outcomes
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to create a powerful ensemble model. However, this method has a symmetric structure
and the depth of decision trees across all nodes is uniform, which is different from other
ensemble learning methods, like XGB.

3.3. Performance Metrics

To compare the performance of prediction techniques and identify the most accurate
one, a number of statistical metrics are used, including the coefficient of determination
(R2), mean absolute error (MAE), mean square error (MSE), mean absolute percentage error
(MAPE), the Akaike information criterion (AIC), and the explained variance (EV). These
metrics are calculated as follows:

R2 =
(n∑ EXPiMDLi − ∑ EXPi∑ MDLi)

2(
n∑ EXPi

2 − (∑ EXPi)
2
)(

n∑ MDLi
2 − (∑ MDLi)

2
) (4)

MAE =
1
n

n

∑
i=1

|EXPi − MDLi| (5)

MSE =
1
n

n

∑
i=1

(EXPi − MDLi) (6)

MAPE =
∑n

i=1|EXPi − MDLi|
∑n

i=1 EXPi
(7)

EV = 1 − Var(EXPi − MDLi)

VarEXPi
(8)

Where EXPi and MDLi represent the actual and predicted values of data observation
i, respectively. Also, var signifies that variance.

AIC will normally be used to compare the quality of the statistical models for a given
dataset; that is, a lower value indicates better fitting (but a penalty is given for increasing
the number of parameters).

AIC = 2k − 2ln
(
L̂
)

(9)

k shows the number of the model’s parameters and L̂ is the maximum likelihood of
the model. For linear regression models (with normally distributed errors), the equivalent
form is as follows:

AIC = n.ln
(

RSS
n

)
+ 2k (10)

Residual sum of squares is presented by RSS and n is the number of observations. In
terms of evaluating model performance, a higher R2 and EV signify that the model has
a better fit to the observed data. In contrast, it is preferable that MAE, MSE, and MAPE
yield a lower value. Moreover, if a model has the lowest negative AIC value, it has better
performance for predicting.

3.4. Interpretation Method

Another objective of this study is to determine the relative influence of variables
on IRI. In this regard, after detecting the best-performing machine learning method by
performance metrics, it is synchronized with the SHapley Additive exPlanation (SHAP) to
interpret its results and identify the top determinants of IRI prediction. SHAP is a game
theory-based method that applies local explanations to prioritize independent variables
based on their relative influence on the dependent variable. To this end, this method uses a
unitless metric, called the SHAP value, to compare the relative influences. We used SHAP
since it performs better than other interpretation techniques in terms of consistency and
computational performance [39].
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3.5. Uncertainty Modeling

As mentioned, one of the main objectives of this study is to model uncertainty in
IRI prediction. To this end, the best-performing machine learning method (identified by
performance metrics) is used in the uncertainty analyses. For modeling uncertainty, we
applied the model agnostic prediction interval estimator (MAPIE). MAPIE implements
conformal prediction techniques to estimate uncertainties, offering strong theoretical guar-
antees on marginal coverage under mild assumptions about the model and the underlying
data distribution. For more details about MAPIE, refer to Taquet et al. [40].

MAPIE relies on three main elements: the base prediction model, the method for
constructing prediction intervals (called conformal prediction methods), and the target
coverage level. As mentioned, we used the best-performing machine learning technique
(among the ten methods applied) as the base prediction model. We used four conformal
prediction methods: Naïve, Jackknife, Jackknife+, and Minmax, since they are the con-
ventional methods to create prediction intervals for regression prediction problems [40].
Rather than predicting a single value, these methods evaluate the lower bound and upper
bound of the predicted value for each data observation and provide us with a predicted
interval. These intervals are calculated based on the residuals. The target coverage level is
the desired proportion of observations for which the true values fall within the predicted
intervals [40]. In this study, three target coverage levels are considered: 80%, 90%, and 95%.
The conventional values for the target coverage level are 80%, 90%, 95%, and 99% [41]. We
excluded 99% since one of the methods could obtain an effective coverage of 100% with an
effective target coverage level of 95%. That is, increasing the target coverage level after this
threshold (95%) was not effective since the width of intervals was increased without any
improvement in the effective coverage.

Therefore, 12 uncertainty models are developed by combinations of four conformal
prediction methods and three target coverage levels. To identify the optimal combination
(out of 12), a multi-criteria decision-making method, called grey relational analysis (GRA),
is used. For more details about GRA, refer to Panda et al. [42]. This method compares
the combinations of prediction interval methods and target coverage levels using two
criteria: the average interval width and the actual coverage level of testing data (i.e.,
effective coverage). Each method predicts an interval (i.e., range) for every observation.
The average interval width is calculated as the mean difference between the upper and
lower bounds of these intervals. The actual coverage level is defined as the percentage
of testing observations whose true values fall within the predicted intervals. An optimal
uncertainty model refers to a model with a lower average interval width and a higher
actual coverage level.

After detecting the optimal uncertainty model, it is applied to identify uncertainty parame-
ters. In this regard, the independent variables of the IRI prediction models (shown in Table 1)
were considered independent variables. The interval width of data observations calculated by
the optimal uncertainty model is considered the dependent variable. Then, an MLR model is
applied to determine the significant variables on the uncertainty of IRI prediction.

4. Results and Discussion
4.1. Performance of Prediction Methods

As mentioned, ten prediction methods were applied to predict IRI and identify the
best-performing method based on various metrics. In this part, the results of the developed
models used for predicting IRI are presented. The value of predicted IRI and measured
IRI for testing data is presented in Figure 2. This figure contains ten developed models
against the measured IRI. An equality line is also drawn. The proximity of the data to the
equality line provides insight into the accuracy of the developed models. Looking at the
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details, among various models, LGB produces the least variance in data, with predictions
close to the equality line representing the power of LGB for predicting IRI. The statistical
parameters for evaluating developed models on testing data are presented in Figures 3–8.

Figure 2. Performance of the developed models for predicting IRI on testing data.

Figure 3. The result of the R2 value for various models.
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Figure 4. The result of the EV value for various models.

Figure 5. The result of the MAE value for various models.
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Figure 6. The result of the MSE value for various models.

Figure 7. The result of the MAPE value for various models.
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Figure 8. The result of the AIC value for various models.

Figure 3 shows the R2 value of various methods on testing data, with the highest value
implying better performance. What stands out from the figure is that the R2 of MLP, DT, RF,
GB, CatB, AdaB, and LGB was over 0.9. Among these techniques, the highest testing data
R2 is associated with MLP, followed by LGB and RF. On the other hand, KNN was ranked
as the last model. EV is illustrated in Figure 4 and has the same approach as R2. LGB had
superior precision in comparison with other methods. Regarding EV, only LGB and MLP
obtain a value of over 0.92. Similarly, KNN was the worst-performing model based on EV.

In prediction methods, MAE, MSE, and MAPE parameters should have the lowest
values (preferred 0). Figures 5–7 show that the LGB method has the lowest value of these
three parameters on testing data, showing that this method outperforms other techniques.
AIC had an inverse approach, and a model can predict a reliable and accurate IRI if it has the
lowest negative value. The AIC of various methods on testing data is presented in Figure 8.
As can be seen, like other metrics (except R2), LGB provided a superior performance.

Figure 9 illustrates the error distribution of the developed models. If we look at the
details, in terms of the LGB model, the overall distribution of values approaches zero,
suggesting that values are not biased. In other words, the difference between the measured
and predicted values of the model is similar to zero. In addition, despite the other methods
having a wide range of errors, approximately from −65% to 40%, the error range of LGB is
within the range from −20% to 30%, implying its superior performance on IRI prediction.
To sum up, LGB outperforms other prediction methods when comparing EV, MAE, MSE,
MAPE, AIC, and the error histogram. However, LGB was the second-best model when
comparing R2 after MLP. We consider LGB to be the best-performing method for IRI
prediction for two reasons. First, its performance is better than other prediction methods in
6 metrics (out of 7). Second, we aim to minimize the prediction accuracy, while R2 is not a
well-suited metric for evaluating prediction accuracy. Also, the difference between the R2

of LGM and MLP (maximum R2) is not significant (i.e., 0.002). Therefore, LGB is employed
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for further analysis, presented in the following parts (i.e., SHAP and uncertainty). The
optimal hyperparameters of all methods are presented in Table 2. Table 3 summarizes the
performance of prediction models.

Figure 9. The frequency and normal distribution of models.

Table 2. The optimal hyperparameters.

Model Hidden_Layer_Sizes Activation Solver Alpha Learning_Rate

MLP 365 tanh sgd 0.001 adaptive
learning_rate max_depth n_estimators

GB 0.01739 3 470
XGB 0.03579 3 436
CatB 0.03977 3 261
AdaB 0.0127 - 70
LGB 0.07662 3 72

max_depth min_samples_split n_estimators
RF 23 2 155

n_neighbors weights p
KNN 4 distance 2

fit_intercept
LR TRUE

Table 3. The performance of prediction models.

Model R2 MAE (m/km) MSE (m/km)2 AIC EV MAPE (%)

MLP 0.929 0.095 0.017 −419.453 0.921 0.081
DT 0.917 0.095 0.021 −405.717 0.908 0.075
KNN 0.789 0.152 0.046 −319.624 0.782 0.121
RF 0.919 0.092 0.020 −428.647 0.920 0.074
GB 0.905 0.094 0.022 −398.625 0.901 0.074
XGB 0.894 0.093 0.024 −388.888 0.889 0.073
CatB 0.915 0.095 0.019 −414.226 0.914 0.078
AdaB 0.916 0.095 0.018 −421.255 0.916 0.079
LGB 0.927 0.090 0.016 −431.953 0.926 0.072
LR 0.885 0.141 0.030 −341.853 0.838 0.085
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4.2. Relative Influence of Variables

The relative influence of independent variables on IRI is calculated by SHAP, and the
top 20 variables are presented in Figure 10. As shown, the initial IRI has the top-ranked
determinant of IRI prediction, followed by mean annual temperature and the duration
between data collections. Song et al. [43] applied a ThunderGBM-based ensemble learning
model and SHAP to identify the relative influence of variables on IRI, and the results
suggested that initial IRI was by far the top determinant of IRI, followed by the depth
of rutting and the area of patches. Although their results were in line with the results of
this study regarding the top-ranked determinant (initial IRI), the ranking of duration was
significantly different (ninth in that study) from the current study (third). Erfani et al. [44]
used XGBoost and SHAP to capture the top determinants of IRI. The outcomes suggested
that initial IRI was first, and average annual temperature was the fourth top variable, which
is in harmony with the results of the current study.

Figure 10. The SHAP value of variables on IRI.
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Clearly, a higher initial IRI value leads to a higher IRI value in the next data collection.
Further, the IRI values are higher in colder regions. In regions with frost-sensitive soil
and availability of water, subfreezing temperatures can lead to frost heaving and lifting
of stones in the pavement [45]. The freeze and thaw cycles in colder regions are expected
to be higher, and freeze and thaw cycles deteriorate the mechanistic properties of asphalt
mixes, and as a result, the durability of pavement is reduced, and IRI is increased [46]. In
cold regions, it is more likely to snow. The process of snow plowing and anti-icing can
damage the pavements, and as a result, IRI is likely to increase. These might be some of the
reasons why IRI is higher in colder regions [47]. The third variable is the duration between
data collections. IRI is a function of time, and as time passes, it increases exponentially [9].
Regarding distress, when the length of high severity longitudinal cracking in the non-
wheel path was very high, IRI was expected to be higher. The presence of high-severity
longitudinal cracking in the non-wheel path is often correlated with other forms of distress,
such as transverse cracking, block cracking, edge cracking, and patching. Also, the NWP
longitudinal cracking can represent the condition of pavement in terms of environmental
conditions, age, layer thickness, and kinematic viscosity, and it might be one reason why
this variable is a strong predictor of IRI.

4.3. Uncertainty Analysis

As mentioned, we applied a conformal prediction interval framework with the best-
performing prediction technique (LGM) to investigate uncertainty in predicting IRI. Four
conformal prediction methods were used for constructing prediction intervals: Naïve,
Jackknife, Jackknife+, and Minmax. Three target coverage levels were considered: 80%,
90%, and 95%. The effective coverage (i.e., actual coverage level for testing data) of various
conformal prediction methods is presented in Figure 11. As shown, the effective coverage
of Minmax was higher than that of other methods at all target coverage levels, followed
by Jackknife+, Jackknife, and Naïve. The effective coverage of Minmax, Jackknife, and
Jackknife+ was higher than the target coverage level at all levels.

 

Figure 11. The effective coverage of conformal prediction methods.
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The average interval width of these techniques is presented in Figure 12. As can be
seen, the average interval width is minimum for Naïve at all levels, followed by Jackknife,
Jackknife+, and Minmax. Hence, it can be theorized that Minmax ensures reliable coverage
at the expense of wider intervals. Jackknife+ and Jackknife provide a favorable trade-off
between precision and coverage. Naïve tries to minimize the average interval width by
sacrificing the coverage.

Figure 12. The average interval width of conformal prediction methods.

Figure 13 presents the prediction intervals of IRI along with the corresponding actual
values for the testing data. In this figure, the gray bars and yellow dots imply that the
actual IRI was within the prediction interval, and the predicted interval crossed the equity
line (e.g., the actual IRI was 1.5 m/km, and the predicted interval was from 1.4 m/km to
1.55 m/km). On the other hand, the red error dots and bars denoted that the actual value
was outside the prediction interval (e.g., the actual IRI was 1.5 m/km, and the predicted
interval was from 1.25 m/km to 1.45 m/km).

As can be perceived, by increasing the target coverage level (going from top to bottom),
the error was reduced, but the width of intervals was increased. Further, Minmax has the
highest coverage, but the largest intervals. For example, Minmax/95 can correctly cover all
the testing data, but the interval widths are extremely large. On the other hand, Naïve has
the lowest coverage and smallest intervals. Jackknife and Jackknife+ provide a trade-off
between width and coverage.
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Figure 13. The prediction intervals generated by conformal prediction methods. (Cov: effective
coverage, W: average interval width).

4.4. Optimal Uncertainty Model

As shown in the previous section, we developed 12 uncertainty models based on
four conformal prediction methods and three target coverage levels. To find the optimal
uncertainty model, a GRA is performed. GRA uses a metric (gray relational grade (GRG))
to compare various alternatives based on multiple criteria. The GRG ranges between
0.33 (the worst possible option) and 1 (the best possible option) [42]. The criteria in
GRA are effective coverage and average interval width. That is, GRA aims to find the
optimal uncertainty model with the highest effective coverage and minimum average
interval width. The GRG of uncertainty models is presented in Figure 14. Drawing on
the results, Minmax/80 is the optimal uncertainty model for IRI prediction with a GRG of
0.667, followed by Minmax/95, Naïve 80, and Minmax/90. Hence, the Minmax technique
outperforms other conformal prediction methods when comparing effective coverage and
average interval width simultaneously. The Minmax/80, as the optimal uncertainty model,
has an effective coverage of 93.4% with an average interval width of 0.256 m/km. In other
words, Minmax/80 provides a prediction range for testing data with an average width of
0.256 m/km, and for 93.4% of observations, the actual IRI is within the range.
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Figure 14. The GRG of various uncertainty models.

4.5. Uncertainty Parameters

After detecting the optimal uncertainty model (Minmax/80), its results were used to
identify uncertainty parameters. To this end, the interval width of testing data observations
is considered the dependent variable, and other variables shown in Table 1 are independent
variables. Then, an MLR model is performed, and the variables with a p-value of less than
0.05 are considered uncertainty parameters in IRI prediction. The uncertainty parameters
and their coefficients in the MLR analysis are presented in Table 4. As shown, the Initial
IRI is an uncertain parameter, and a higher initial IRI increases the uncertainty in IRI
prediction. The duration between data collections is another uncertainty parameter, and
predicting IRI for longer durations increases the uncertainty. Further, lower ESALs increase
the uncertainty in IRI prediction. The lower length of low severity transverse cracks and
medium severity sealed transverse cracks, and the higher length of transverse cracks longer
than 183 cm are associated with higher uncertainty levels. Moreover, in regions with higher
total annual precipitation, the certainty about the predicted IRI is less than in other regions.

Table 4. Uncertainty parameters in IRI prediction.

Variable Coef. Std. Err. t p > |t|

Initial IRI (m/km) 7.83 × 10−2 0.015 5.176 0.000
The duration between data collections (days) 1.88 × 10−7 0.000 6.550 0.000
ESALs (number of loads) −3.76 × 10−8 0.000 −2.479 0.016
Length of low severity transverse cracks (m) −5.01 × 10−3 0.002 −2.277 0.026
Length of medium severity sealed transverse cracks (m) −6.98 × 10−2 0.035 −2.004 0.049
Length of transverse cracks longer than 183 cm (m) 1.18 × 10−2 0.006 2.126 0.037
Total annual precipitation (mm) 3.05 × 10−5 0.000 2.268 0.026
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5. Conclusions
This study investigated IRI prediction and the associated uncertainty with these

models. Previous studies generally applied a few independent variables to predict IRI.
However, this study collects a comprehensive dataset including all the essential features to
maximize the performance of IRI prediction models, and a dataset of over 500 observations
and 35 independent variables was used for modeling. Another contribution of this study is
to apply powerful machine learning models that can be widely applied to predict IRI, such
as LGB and CatB. Another novelty of this investigation is the application of a conformal
prediction interval framework to analyze the uncertainty in IRI prediction and to identify
the factors that contribute to increased uncertainty. In the following paragraphs, a summary
of the objectives and results is presented.

The first objective of this study was to detect the best-performing prediction method
for IRI prediction. Ten prediction methods were tuned and trained on the dataset, and their
performance was compared based on different metrics. The results showed that the light
gradient boosting machine (LGB) is the best-performing method, and it could predict the
IRI of testing data observations with an R2 of 0.927, an MAE of 0.09 m/km, an MSE of 0.016
(m/km)2, an EV of 0.926, and an MAPE of 7.2%.

The second objective of this investigation was to analyze the relative influence of
independent variables on IRI prediction. In this regard, SHAP was synchronized with the
best-performing method (LGB) to sort variables based on their relative influence on IRI.
The results suggested that initial IRI was the top-ranked variable on IRI, followed by mean
annual temperature, the duration between data collections, and the length of high-severity
longitudinal cracking in the non-wheel path. A more detailed look at the SHAP results
revealed that higher initial IRI, lower mean annual temperature, longer durations, and
higher length of high-severity longitudinal cracking in the non-wheel path led to higher
IRI values.

The third goal of this study was to determine the optimal uncertainty model for
IRI prediction. To this end, 12 uncertainty models are developed by combinations of
four conformal prediction methods and three target coverage levels. These methods
were compared by effective coverage and average interval width. Then, a multi-criteria
decision-making method (GRA) was utilized to identify the optimal uncertainty model.
The outcomes of GRA suggested that Minmax/80 was the optimal model with a GRG of
0.667. This method could cover 93.4% of testing data observation with an average interval
width of 0.256 m/km. The Minmax/80 can be applied to predict the upper bound of IRI.
Therefore, practitioners can apply the upper bound of predicted IRI in the pavement M&R
planning for the pavement sections where the IRI is critical.

The fourth objective of the current study was to determine which parameters and
conditions lead to an increase in the uncertainty of IRI prediction. A further analysis was
performed on the outcomes of the optimal uncertainty model, and the results showed
that higher initial IRI, longer duration of IRI prediction, lower ESALs, lower length of low
severity transverse cracks, lower medium severity sealed transverse cracks, higher length
of transverse cracks longer than 183 cm, and higher total annual precipitation were all
associated with increased uncertainty in the predicted IRI.

These results offer actionable insights for pavement engineers and decision-makers.
First, they can apply LGB for IRI prediction in pavement M&R planning as a reliable tool,
and therefore, the accuracy for pavement M&R planning can be increased. Second, the
results of SHAP can help researchers and practitioners identify the most influential variables
on IRI. Therefore, they can use this information to monitor and manage the most impactful
variables and develop powerful pavement management systems. We also present the
optimal uncertainty model (Minmax/80) that can be used in conservative M&R planning,
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particularly in the sections where safety and service quality are significant concerns. This
study introduces the parameters that can increase uncertainty in IRI prediction. Hence,
the decision-makers can be informed of situations where the uncertainty of IRI prediction
is higher, and they need to apply stochastic programming to plan M&R activities for
pavements under such conditions.

One of the limitations of this study is that it checks only three target coverage levels. To
address this, future studies can consider more target coverage levels to detect the optimal
uncertainty methods. Another limitation of this study is that it does not check the influence
of data size on the uncertainty of IRI prediction. Hence, it is recommended that future
studies use different datasets of different sizes to check the relationship between dataset
size and the level of uncertainty. Another important limitation is the lack of geographic
diversity in the data used. The findings may not generalize well to regions with different
road conditions or construction practices. Hence, future studies are encouraged to apply
the proposed technique in this study to other case studies and compare their results with
the findings of the current study.
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