
Citation: Ghavami, S.; Alipour, Z.;

Naseri, H.; Jahanbakhsh, H.; Karimi,

M.M. A New Ensemble Prediction

Method for Reclaimed Asphalt

Pavement (RAP) Mixtures

Containing Different Constituents.

Buildings 2023, 13, 1787.

https://doi.org/10.3390/

buildings13071787

Academic Editor: Bjorn Birgisson

Received: 8 June 2023

Revised: 30 June 2023

Accepted: 8 July 2023

Published: 13 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

A New Ensemble Prediction Method for Reclaimed Asphalt
Pavement (RAP) Mixtures Containing Different Constituents
Sadegh Ghavami 1,* , Zeynab Alipour 2 , Hamed Naseri 3, Hamid Jahanbakhsh 4 and Mohammad M. Karimi 2

1 Faculty of Civil Engineering, Sahand University of Technology, Tabriz 51335-1996, Iran
2 Department of Civil and Environmental Engineering, Tarbiat Modares University, Tehran 14115-111, Iran;

z.alipour@modares.ac.ir (Z.A.); mohammad.karimi@modares.ac.ir (M.M.K.)
3 Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal,

Montreal, QC H3T 1J4, Canada; hamed.naseri@polymtl.ca
4 Department of Civil Engineering, University of Science and Culture, Tehran 14619-68151, Iran;

h.jahanbakhsh@lecturer.usc.ac.ir
* Correspondence: ghavamijamal@sut.ac.ir

Abstract: Fatigue and rutting are two common damage types in asphalt pavements. Reclaimed
asphalt pavement (RAP), as a sustainable approach in the pavement industry, deals with the foregoing
damage. Fatigue and rutting characteristics of asphalt pavement are generally assessed using
laboratory tests, taking a long time and consuming significant amounts of raw material. This
study aims to propose a novel approach for predicting fatigue and rutting performance of RAP
mixtures. A new ensemble prediction method, named COA-KNN, is introduced by combining
the coyote optimization algorithm and K-nearest neighbor to increase the accuracy of fatigue and
rutting prediction. In order to evaluate the accuracy, the proposed method was compared against
robust prediction methods, including random forest (RF), gradient boosting (GB), decision tree
regression (DT), and multiple linear regression (MLR). Afterward, the influence of each variable on
the mentioned damages is examined, and the variables are ranked based on their relative influence
on the mentioned damages. The results suggest that COA-KNN outperformed other prediction
techniques when comparing different performance indicators. Total binder content in asphalt mixes
and the PG span of the virgin binder added to the recycled asphalt mixture had the highest relative
influence on fatigue and rutting performance, respectively.

Keywords: asphalt mixture; fatigue performance; machine learning; reclaimed asphalt pavement
(RAP); rutting performance

1. Introduction

Transportation is a critical system for every communication as most human and goods
transmissions are conducted using infrastructure [1,2]. As an enormous consumer of
natural resources, the transportation industry contributes 25% and 22% of global energy
usage and fossil fuels burned across the world, respectively. Accordingly, 22.7% of global
greenhouse gas (GHG) production is generated in this industry. A total of 7% of the
mentioned GHG is emitted by pavement which is responsible for transferring 60% of
freight and 80% of passenger traffic [3]. Furthermore, the pavement industry consumes a
significant amount of energy. For instance, aggregate and binder production and hot mix
asphalt (HMA) operation to produce asphalt consume 54, 5810, and 275 MJ/ton energy,
respectively [4]. Thus, the pavement sector can be considered a harmful industry to the
environment, which is a significant concern.

The concerning environmental impacts and the high cost of crude oil have caused
the pavement industry to develop a method to recycle waste pavement materials [5].
Consequently, many methods have been suggested as sustainable approaches, including
the application of recycled materials such as reclaimed asphalt pavement (RAP) [6,7] or
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warm and cold mix asphalt technologies [8]. Warm and cold mix technologies still face
problems, such as moisture damage potential and durability due to water in the binder
emulsion, long curing time, and uncertainty of long-term performance [9]. Consequently,
among these sustainable options, asphalt recycling is the most common method currently
used in this industry, as it creates a cycle of reusing natural resources and reduces the need
for virgin binder and material [10]. However, RAP application provides the mentioned
environmental benefits, increasing its content in asphalt mixtures, and the effect of the
degree of blending between virgin and RAP binders may deteriorate some characteristics
of asphalt pavements [11], such as cracking resistance, moisture damage, etc. Thus, there
has been a dire need to come up with new solutions to increase RAP content without the
mentioned problems [11].

To this end, laboratory tests are generally executed to evaluate the mentioned mechan-
ical behavior of asphalt mixes as a conventional technique. Two major damage types of
concern in asphalt pavements are fatigue cracking and rutting. Thus, previous studies
investigated these failures in mixtures containing RAP using laboratory tests. In order to
evaluate fatigue cracking, the resilient modulus, fracture energy, dynamic modulus, etc.,
have been investigated using various tests such as four-point bending beam, dynamic
modulus, semi-circular bending, and dissipated creep strain energy tests [12,13]. Similarly,
regarding the rutting resistance of asphalt mixtures, rut depth is a parameter that is used for
evaluating this performance. Accordingly, rutting has been investigated in various studies
with tests including wheel tracking and asphalt pavement analyzer tests [14–19]. These
laboratory tests generally showed that increasing the RAP content in mixtures increased
the stiffness of mixtures and improved their rutting resistance but clearly did not specify
the effects of the mixture components on the behavior of RAP mixes.

All the previous laboratory studies experimentally evaluated the performance of
asphalt mixtures containing RAP, though the optimal mixtures are selected between the
produced samples. That is, a limited number of specimens have been generally examined
in experimental laboratory experiments. Moreover, laboratory testing takes a long time to
prepare the specimens, equilibrate the test condition, and perform the tests. Additionally,
these complex procedures take expert technicians, expensive equipment, and even more
energy and material. Furthermore, laboratory specimens harm the environment because
they should be stored in landfills after performing the tests. To diminution these issues,
researchers began to apply soft computing (i.e., machine learning and optimization) tech-
niques to predict various asphalt damages [20]. As such, Garbowski and Pożarycki [21]
used an optimization framework to determine the thickness and stiffness of the pavement
layers through a multi-level inverse approach. Sarkhani Benemaran et al. [22] applied
extreme gradient boosting to predict the resilient modulus of flexible pavement foundations.
Esmaeili-Falak and Sarkhani Benemaran [23] developed a new prediction model using
extreme gradient boosting to predict the resilient modulus of modified base materials.

Ghasemi et al. [24] applied artificial neural networks (ANN) and linear regression to
predict the dynamic modulus of asphalt, considering volumetric and particle size gradation
as input variables. Only nine mixture proportions were taken as the dataset. The results
suggested that ANN outperforms linear regression when comparing the prediction accuracy.
Behnood and Daneshvar [20] estimated the dynamic modulus of asphalt mixes using the
M5P algorithm and a dataset including 4022 asphalt mixture samples. The dataset included
different input variables, including aggregate gradation, volumetric properties, binder
characteristics, etc., and one output variable (i.e., dynamic modulus). The mentioned model
obtained an R2 of 0.919. Behnood and Golafshani [25], in another study with the same
dataset and variables, used the biogeography-based optimization (BBO) algorithm, which
enhanced the accuracy with an R2 of 0.9601.

Likewise, prediction techniques have been applied to predict the rutting of asphalt
pavements. Initially, regression models were used to predict the rutting of asphalt pave-
ments [26]. However, recently, researchers have started to apply powerful prediction
techniques to predict rutting. As such, Ullah and Zainab [27] studied the rutting perfor-
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mance with a dataset including 0 to 60% RAP. The input variables were loading cycles,
RAP percentage, RAP binder content, etc. Using an ANN-based model, they predicted
the rutting behavior with a testing data R2 of 0.997. Majidifard et al. [28] predicted the
rut depth of asphalt mixes using genetic expression programming. The dataset consisted
of 96 test samples. The used parameters were mix and binder characteristics, aggregate
gradation, and the content of additives in the mixtures, which led to an R2 of 0.84.

Previous studies mainly focused on dynamic modulus and rut depth as indices for
fatigue and rutting resistance, respectively, which are the mechanical properties of asphalt
mixtures. Since the aim of this study is the evaluation of fatigue and rutting characteristics
of these mixes in the field, two general indexes (fatigue life and rutting resistance index)
are chosen for the prediction procedure. In addition, the used algorithm is a key element of
the prediction procedure, and hence, an accurate and robust algorithm must be developed
to achieve reliable results. Moreover, a major part of the dataset used for the prediction
procedure was concentrated on low percentages of RAP. The lack of data for mixes with
high percentages of RAP affects the prediction procedure resulting in inaccurate models.

In this study, unlike the discussed studies, two general indices were used for fatigue
and rutting resistance of asphalt pavement instead of dynamic modulus and rut depth
to better indicate the field behavior of asphalt mixtures. Meanwhile, in this study, the
database included mixes containing high percentages of RAP. An appropriate prediction
algorithm should be applied to the mentioned prediction problem to reach the highest
possible accuracy. In this regard, a new robust ensemble method was developed to predict
the fatigue and rutting performance of asphalt mixes accurately. The mentioned method
was developed by merging a machine learning technique with a metaheuristic optimization
algorithm. The introduced prediction method was then compared against conventional
prediction methods in order to evaluate its performance and prioritize the performance
of all the prediction algorithms applied in this research on fatigue and rutting prediction
problems. Further, the impact of each input variable on the outputs of the models was
investigated. That is, the features (variables) were ranked based on their relative influence
on fatigue and rutting resistance. Therefore, researchers could select the optimal parame-
ters to improve the fatigue and rutting performance of asphalt mixtures containing high
RAP content.

2. Methodology

This study attempts to predict the fatigue and rutting performance of asphalt mixtures
containing RAP. To this end, two general indices for fatigue and rutting (i.e., Nf and RRI,
which will be further explained in the following sections) are used since these indices
better indicate the fatigue and rutting life of asphalt. The Table of abbreviations with their
explanations are shown in Appendix A. In order to achieve higher accuracy in the predicted
values, a new ensemble method is developed. The performance of the introduced method
is further evaluated by comparing its accuracy with random forest, gradient boosting,
decision tree, and multiple linear regression. Ultimately, the effect of each input variable
(e.g., RAP percentage and total binder percentage) on the fatigue and rutting prediction
models were assessed and prioritized. The methodology flowchart is indicated in Figure 1.

The following sub-sections are presented in this section:

• The process of data preparation
• The applied algorithms for the prediction procedure
• The description of machine learning performance indicators used to evaluate the

accuracy of prediction algorithms
• The methods applied to analyze the effects of the model’s inputs on output variables
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2.1. The Data Preparation Process

An accurate model needs to contemplate all affecting features on the intended pa-
rameters, which are fatigue and rutting indices, in this study. As this study aims at the
fatigue and rutting prediction of asphalt mixes containing RAP, two datasets are extracted
and generated from authentic international publications. A dataset including 227 asphalt
mixture samples is prepared for the fatigue life modeling [29–66]. The model’s input
variables (features) include the RAP percentage, the span of the PG of the virgin binder,
the intermediate-temperature performance grade (PG) of the virgin binder, the rejuvenator
content, the virgin asphalt content, the asphalt content in RAP, the total asphalt content, the
percentage of aggregate smaller than 4.75 mm (fine aggregate), the percentage of aggregate
larger than 4.75 mm divided by the percentage of aggregate smaller than 4.75 mm (coarse
aggregate/fine aggregate ratio), and the dynamic modulus test temperature. It should
be noted that since fatigue life (Nf) is very skewed, the natural logarithmic scale of it is
preferred to be considered for the model’s output variable since the logarithmic transfor-
mation increases the fatigue life prediction accuracy [67]. The fatigue life of the mixes is
evaluated to assess the fatigue performance of asphalt pavements. Equation (1) is applied
to calculate the fatigue life of the asphalt mixture [68].

N f = 0.0796 ε−3.291
t |E∗|−0.854 (1)

where Nf is the allowable cycles of fatigue life, εt is the tensile strain at the bottom of
asphalt layers under the wheel (strain) which has been considered 0.0002 strains [69], and
|E*| is the dynamic modulus of asphalt mixture (MPa) extracted from dynamic modulus
test (AASHTO TP62).
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The description of the fatigue prediction input and output variables and their de-
scriptive statistics are given in Table 1. The dataset contains 12 input variables and one
output variable.

Likewise, a dataset including 226 data samples of asphalt mixes containing RAP
is employed for rutting resistance performance prediction [14–16,19,68,70–88]. Different
input variables, including the RAP content, the span of PG of the virgin binder, the high-
temperature PG of the virgin binder, the rejuvenator content, the virgin binder content, the
binder content in RAP, the total binder content, the nominal maximum aggregate size, the
percentage of fine aggregate size, and the coarse aggregate to fine aggregate ratio, are taken
into consideration as the model’s input features. Meanwhile, the rutting resistance index
(RRI) is considered the model’s output variable since RRI implies the rutting resistance
of asphalt pavement based on the rut depth and the loading cycles reported from the
laboratory tests. The RRI can be calculated from Equation (2) [89].

RRI = N × (1− RD) (2)

where RRI is the rutting resistance index, N signifies the number of cycles at the end of
the test, and RD is the rut depth (inch) (AASHTO T324). In this equation, the maximum
allowable rut depth is 1 in [89].

The description of the input and output features and their descriptive statistics are
presented in Table 2 for rutting. The dataset contains ten input variables and one output
variable. Further, the distributions of fatigue and rutting indices are shown in Figure 2.
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Table 1. Description of the variables and their descriptive statistics for fatigue index.

Variable Type Description Data

Pearson
Correlation

with Ln
(Nf)

Maximum Minimum Average Variance Standard
Error Kurtosis

Nf
Fatigue
Index

Calculated fatigue index Training - 1.25× 108 2.43× 107 5.88× 107 1.91× 107 1.52× 106 0.91
Testing - 1.09× 108 3.09× 107 6.14× 107 1.87× 107 3.15× 106 0.14

Ln (Nf)
Fatigue
Index

Ln of Calculated
fatigue index

Training 1 18.64 17.01 17.84 0.31 0.02 −0.01
Testing 1 18.50 17.25 17.89 0.29 0.05 −0.10

Temperature Test
Condition

Dynamic modulus test temperature (◦C) Training 0.005 25.00 4.00 19.41 3.15 0.25 6.72
Testing 0.005 25.00 15.00 19.89 2.30 0.39 1.70

RAP RAP RAP content (%) Training −0.292 100.00 0.00 31.76 21.95 1.75 1.20
Testing −0.384 70.00 0.00 30.74 18.68 3.16 −0.31

PGSpan Binder Span of PG of binder Training 0.232 98.00 62.00 86.47 9.28 0.74 0.39
Testing 0.127 98.00 62.00 87.71 8.76 1.48 0.60

PGInter Binder Intermediate-temperature PG of binder Training −0.246 40.00 10.00 22.92 4.67 0.37 1.90
Testing −0.278 37.00 10.00 22.43 5.46 0.92 0.90

Rejuvenator Rejuvenator Rejuvenator
content (%)

Training 0.052 13.80 0.00 1.30 3.25 0.26 4.45
Testing 0.010 12.00 0.00 1.45 3.16 0.53 3.87

ACVirgin Volumetric Virgin asphalt content (%) Training 0.326 6.74 0.00 3.69 1.31 0.10 0.48
Testing 0.397 8.00 1.00 3.62 1.29 0.22 2.98

ACRAP Volumetric
RAP asphalt
content (%)

Training −0.117 7.90 0.00 4.27 1.93 0.15 0.98
Testing −0.245 8.90 0.00 4.39 1.99 0.34 1.61

ACTotal Volumetric
Total asphalt
content (%)

Training 0.366 8.00 3.70 5.32 0.76 0.06 0.54
Testing 0.428 8.00 4.00 5.28 0.75 0.13 3.54

NMAS Gradation Nominal maximum aggregate size (mm) Training −0.217 20.00 4.75 13.62 3.55 0.28 −0.13
Testing −0.145 20.00 4.75 13.87 3.56 0.60 −0.01

Fine agg. Gradation Aggregate smaller than 4.75 mm (%) Training 0.215 93.00 6.10 57.54 13.17 1.05 0.68
Testing −0.148 76.80 33.90 56.07 11.90 2.01 −0.97

Course agg./Fine agg. Gradation Aggregate larger than 4.75 mm/Aggregate smaller than 4.75 mm Training 0.149 13.29 0.06 1.69 1.39 0.11 31.89
Testing −0.214 3.31 0.51 1.47 0.74 0.12 0.24



Buildings 2023, 13, 1787 7 of 30

Table 2. Description of the variables and their descriptive statistics for the rutting index.

Variable Type Description Data Pearson Correlation with RRI Maximum Minimum Average Variance Standard Error Kurtosis

RRI Rutting
Index

Calculated
rutting index

Training 1 37,007.90 4094.49 12,767.91 5666.04 450.77 1.88
Testing 1 27,401.60 6305.51 12,577.05 4975.55 853.30 0.23

RAP RAP RAP content (%) Training 0.008 100.00 0.00 36.04 24.97 1.99 0.56
Testing −0.058 100.00 0.00 35.96 18.27 3.13 3.70

PGSpan Binder Span of PG of binder Training −0.146 98.00 62.00 82.66 9.38 0.75 −0.26
Testing −0.096 98.00 68.00 84.50 8.04 1.38 0.13

PGHigh Binder High-temperature PG of binder Training −0.084 76.00 46.00 60.24 7.87 0.63 −0.29
Testing −0.030 76.00 46.00 60.74 8.18 1.40 −0.01

Rejuvenator Rejuvenator Rejuvenator content (%) Training −0.091 15.00 0.00 1.88 3.40 0.27 2.08
Testing −0.081 9.28 0.00 0.84 2.41 0.41 7.55

ACVirgin Volumetric Virgin asphalt content (%) Training −0.038 8.00 0.00 3.89 1.38 0.11 0.71
Testing −0.124 5.70 0.51 3.75 1.01 0.17 2.33

ACRAP Volumetric RAP asphalt content (%) Training 0.063 7.90 0.00 3.94 1.85 0.15 0.59
Testing −0.265 6.20 0.00 4.55 1.31 0.22 6.97

ACTotal Volumetric Total asphalt content (%) Training −0.191 8.00 3.70 5.54 0.76 0.06 0.64
Testing −0.402 6.60 4.00 5.40 0.61 0.10 0.04

NMAS Gradation
Nominal

maximum aggregate size (mm)
Training 0.091 25.00 4.75 14.69 5.27 0.42 −0.47
Testing 0.346 25.00 4.75 13.41 3.79 0.65 1.85

Fine agg. Gradation Aggregate smaller than 4.75 mm (%) Training 0.087 88.90 10.00 53.74 16.63 1.32 −0.51
Testing −0.130 93.00 25.20 52.16 15.40 2.64 0.32

Course agg./Fine agg. Gradation
Aggregate larger than 4.75 mm

/Aggregate smaller than 4.75 mm
Training −0.212 9.00 0.12 1.10 0.95 0.08 29.89
Testing −0.085 2.97 0.08 1.11 0.69 0.12 1.21
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It is noteworthy that 75% of data samples are used as training data. Training data is
used to tune hyperparameters and train the model. That is, K-fold cross-validation (consid-
ering K = 5) and grid search methods are simultaneously used to tune the hyperparameters
of prediction techniques. Then, the other 25% of (testing data) is used to evaluate the
performance of prediction techniques on unseen data samples.

2.2. Prediction Algorithms

As described before, in order to increase the accuracy of the fatigue and rutting
prediction, a new hybrid algorithm is proposed, and to assess the performance of this
newly developed algorithm, four conventional methods are employed. Before running
the machine learning algorithms, the input variables are scaled using the standard scaler
in the python SKlearn library. Standard scaler applies Equation (3) to scale the range of
all variables.

Si =
xi − u

std
(3)

where, Si implies the scale value of the data sample i, xi is the raw data value of the data
sample I, and u and std signify the mean and standard deviation of data samples.

In this section, the utilized algorithms are explained.

2.2.1. Decision Tree

The decision tree (DT) is a prediction technique capable of modeling regression and
classification problems. DT simulates the structure of trees, particularly their leaves,
and nodes, to divide the dataset into categories with similar characteristics. DT is a
straightforward prediction method, and its outcomes are easy to interpret. DT has been
widely used for prediction purposes since it can be modeled as a white-box prediction
technique. It was demonstrated that DT could face large-scale datasets with a significant
number of samples. DT generally works based on some decision rules, determining feature
cut-off thresholds. Initially, it is assumed that all data samples constitute a tree. Then the
algorithm moves forward and splits samples into different sub-samples using a feature
threshold in each leaf node. Subsequently, each sub-sample is divided into smaller sub-
samples using another feature threshold. This data sample division is kept on until the
model obtains pure sub-samples or termination criteria are met. Afterward, DT employs
a back-forward pruning technique to cut nonessential splits (branches) to enhance the
model’s efficiency and decrease the computational complexity [90].

2.2.2. Random Forest

Random forest (RF) is an ensemble prediction technique applied for regression, classi-
fication, and outlier detection. RF mainly obtains high prediction accuracy, performs well in
large-scale datasets, and reduces the likelihood of over-fitting. It was demonstrated that RF
is a computationally efficient prediction method and can perform well even if the number
of data samples is inadequate. RF generally employs different randomly generated decision
trees. Then, the generated models are aggregated using the bagging technique. That is,
a powerful ensemble method is created using bootstrap aggregation decision trees [91].
Consequently, decision tree algorithms are run and predict the model’s dependent variable.
RF considers the prediction value of all decision trees in the prediction process. Hence, the
average value of decision trees’ outputs is considered the RF prediction value [3].

2.2.3. Gradient Boosting

Gradient boosting regression is an ensemble prediction method that can be used for
regression and classification problems. Gradient boosting regression (GB) combines various
decision trees to create a powerful prediction model. GB generates basic decision trees
iteratively and combines these weak regressions through boosting process. Additional
decision trees are added in each iteration of the boosting process. Hence, a new regression
model is generated by GB at each iteration, and the combination method is optimized using
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a loss function (e.g., absolute error or squared error) and training data. Accordingly, the
model seeks to add basic trees that can reduce the loss function to the prediction model. It
has been demonstrated that GB is a powerful method for databases containing unbalanced
data and outliers, and it can guarantee prediction efficiency for these databases [92].

2.2.4. Multiple Linear Regression

Multiple linear regression (MLR) is a conventional technique applied for prediction,
data representation, and an indication of relevant feature relationships in cases where data
follow a linear pattern. MLR is a quick and straightforward method that is easy to interpret
since it is a white-box prediction technique. However, the regression structure in MLR
should be determined before running the model, and the predefined structure may reduce
the model’s flexibility and prediction accuracy [93].

2.2.5. The Proposed Prediction Method (COA-KNN)

As mentioned, a new ensemble regression method is introduced in this study to predict
asphalt’s fatigue index and rutting index accurately. The proposed model is generated
using the coyote optimization algorithm (COA) as a robust metaheuristic algorithm and
K-nearest neighbors regression (KNN) as a powerful prediction technique. COA and KNN
are described in this section, and afterward, the proposed ensemble regression method
is presented.

COA is a novel swarm intelligence optimization algorithm proposed by Pierezan and
Coelho. This algorithm mimics the social behaviors and interactions of coyote Canis latrans.
COA assumes that each solution vector is a coyote in the feasible region (coyote society).
The coyote’s behavior is modeled to investigate the feasible region and finds the optimal
solution. Each coyote is a vector representing the values for each independent variable of
the optimization problem. First, some coyotes are generated by allocating random values
to all independent variables. Afterward, the fitness values of coyotes are calculated using
the problem’s objective function. Consequently, the coyotes are categorized into different
herds. That is, solution vectors are divided into various groups to investigate different
parts of the feasible region at the same time and avoid sticking to locally optimal solutions.
Subsequently, the coyotes are compared based on their fitness value, and the most valuable
coyotes (highest fitness value) in each group are called alpha [94].

Then, the transfer culture operation is performed, and all coyotes are attracted by
their groupmates and their groups’ alpha. Hence, they are transferred to points, which
are located near their alpha and their groupmates. The coyotes with higher fitness values
have higher attraction than others. Therefore, more coyotes are accumulated in areas with
better previous experiences. Meanwhile, some solution vectors are transferred between
groups in each iteration. This process reduces the likelihood of sticking to local optimal
solutions by scattering some solutions in the problem’s feasible region. Ultimately, the
death and birth operator is performed to enhance the algorithm’s performance. In this
operation, the weakest solution vectors are removed from society (death), and new random
solution vectors are created (birth) to investigate new areas in the feasible region. These
processes are performed in all iterations, and after meeting the termination criteria, the
algorithm stops working, and the solution vector with the highest fitness value (best coyote)
is reported as the optimization problem’s optimal solution [95].

K-nearest neighborhood regression (KNN) is a robust regression model applied for
statistical analysis and prediction since the 1970s. KNN is a non-parametric regression
model that predicts the output values considering the resembling data points in the data
set. That is to say; all training data points are plotted in an F-dimension space according
to the prediction problem’s input values, where F implies the number of input values in
the prediction problem. Subsequently, the distance of each data point to all data samples
is computed. Then, the output value of K nearest data samples is employed to predict
the output value of the mentioned data point. Among K nearest data samples, the data
points with lower distances affect the output value more than the data samples with longer
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distances. However, the model is highly sensitive to the value of K, and the model may not
obtain accurate predictions if appropriate values are not considered for K [96]. To this end,
the proposed model combines different KNN models with different K values to prevail in
the mentioned deficiency.

As previously mentioned, COA and KNN are combined to propose a new ensemble
prediction method. In this regard, an optimization problem is modeled, which is indicated
in Equations (4) and (5).

min
∣∣∣ypre

i − yexp
i

∣∣∣ ∀i ∈ {1, 2, . . . , I} (4)

s.t : ypre
i = c0 + ∑K

k=1 ck × yKNNk
i ∀i ∈ {1, 2, . . . , I}, ∀k ∈ {1, 2, . . . , K} (5)

where yi
pre and yi

exp signify the prediction value and real value of validation data sample i.
yi

KNNk denotes the prediction value of validation data sample i predicted by the KNN
model k. c0 and ck are the constant value and the coefficient of the KNN model k. That
is, c0 and ck are the optimization decision variables that should be optimized using COA.
I is the number of validation data, and K is the number of KNN models applied in the
proposed ensemble method.

Equation (4) is the objective function of the optimization problem. As can be seen, the
introduced model aims to minimize the mean absolute error of validation data by finding
the optimal coefficient of each KNN model. Training data are used to run the model. Then,
the trained model predicts the response variable (i.e., rutting or fatigue) for the validation
data (yi

KNNk). Afterward, the real validation data and their predicted values are used to
evaluate the mean absolute error. The optimization model aims to minimize the mean
absolute error by finding optimal values of decision variables. Equation (5) is the constraint
of the optimization problem, in which the prediction value is calculated using the values
predicted by different KNN models, coefficients, and the optimal constant value. In this
investigation, ten KNN models with different K values from 1 to 10 are modeled. However,
it is recommended that the number of KNN is increased in the cases where the number
of data points is higher than that of the current study. Afterward, these ten KNN models
are run. Consequently, the validation data are employed in the models, and the validation
data output value for all KNN models is estimated. Then, the optimal constant value and
the optimal coefficients for each KNN model are obtained by solving the optimization
problem (using COA). The KNN models with the coefficient of zero are removed from
the ensemble model, and the prediction values are computed using the KNN models
with their non-zero coefficients and optimal constant value. This process removes the
models with inappropriate K values, and only robust KNN models remain in the proposed
prediction method. Ultimately, testing data are applied to assess the prediction accuracy
of the proposed model and other conventional prediction techniques. Since COA is a
metaheuristic optimization algorithm, it was run five times to find the optimal structure of
KNN models [97].

2.3. The Evaluation of Algorithms Performance Using the Performance Indicators

The accuracy of prediction algorithms is evaluated using machine learning perfor-
mance indicators. Consequently, these performance indicators are utilized to compare the
performance of prediction algorithms and detect the most accurate model. In this study,
coefficient of determination (R2), mean absolute error (MAE), mean absolute percentage
error (MAPE), mean squared error (MSE), variance account for (VAF), and A10-index are
considered machine learning performance indicators [98]. These indicators are presented
in this part.
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R2 is the proportion of the variance in the dependent variable that is predictable from
the independent variables, calculated using Equation (6) [99].

R2 = 1−

m
∑

i=1
(Xi −Yi)

2

m
∑

i=1

(
Y−Yi

)2 (6)

where m equals the number of values (data samples), Xi equals the predicted ith value,
Yi equals the real ith value, and Y equals the average of the real values.

Mean absolute error (MAE) is an indicator used for measuring the arithmetic average
of deviations between predicted and real values. MAE is estimated using Equation (7) [100].

MAE =
1
m

m

∑
i=1
|Xi −Yi| (7)

Mean absolute percentage error (MAPE) implies the mean percentage deviation be-
tween predicted and real values. MAPE can be calculated based on Equation (8).

MAPE =
1
m

m

∑
i=1

∣∣∣∣Yi − Xi
Yi

∣∣∣∣ (8)

Mean squared error (MSE) is the average squares of the differences between predicted
and real values. The formula of MSE is shown in Equation (9) [101].

MSE =
1
m

m

∑
i=1

(Xi −Yi)
2 (9)

Variance accounts for (VAF) and A10-index are also applied to compare the perfor-
mance of prediction techniques:

VAF =

[
1− var(Yi − Xi)

var(Yi)

]
× 100 (10)

A10− index =
number o f data with values o f rate actual/predicted values (ranging f rom 0.9 to 1.1)

n
× 100 (11)

2.4. Prioritizing Features on Asphalt Mixture Characteristics

A good practice in modeling a prediction technique is to analyze the sensitivity of
potential variables to the prediction model [102]. In ensemble learning techniques, the
important weight represents the sensitivity of potential variables to the prediction model.
In this study, the effect of each input variable (e.g., RAP content, total binder content, the
span of the PG of the virgin binder, etc.) on the fatigue and rutting prediction models is
investigated. In this regard, prediction models are run for each dataset. Afterward, the mod-
els with the highest accuracy are detected. Subsequently, the average importance weight
of the most accurate models is used to prioritize each input feature for each dataset. The
ranking of input variables on fatigue and rutting performance can determine the essential
parameters in optimizing fatigue and rutting performance of asphalt mixes containing RAP,
which is an optimal approach to modify the mixture proportion or mixture conditioning
considering the most important input variables.

3. Results and Discussion

As previously mentioned, this study aims to propose a novel approach to accurately
predict two major damages (i.e., fatigue and rutting) in asphalt mixtures containing dif-
ferent RAP contents using two general indices. To this end, various robust prediction
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techniques, including random forest, gradient boosting, decision tree, and multiple linear
regression, are employed. Moreover, a new hybrid machine learning method is intro-
duced using a combination of COA and KNN. In this section, the following steps are
described, respectively:

• The performance of prediction algorithms on fatigue and rutting prediction
is analyzed.

• The effects of each variable on fatigue and rutting characteristics are presented, and
then the mentioned variables are prioritized based on their effects on the
prediction performance.

• The error histogram of the fatigue and rutting models is presented.

3.1. Performance of Algorithms

As mentioned, four conventional machine learning algorithms are used for the pre-
diction process. Moreover, a new ensemble method, called COA-KNN, is proposed to
increase the prediction accuracy. The developed model and the conventional prediction
algorithms are then run on each dataset (i.e., fatigue and rutting) individually in order to
predict the fatigue and rutting behavior of asphalt mixes containing RAP. In this section,
the performance of prediction techniques on fatigue and rutting prediction problems are
discussed. The performance of prediction techniques is compared through the machine
learning performance indicators.

3.1.1. Performance of Machine Learning Algorithms—Fatigue

The obtained prediction model for fatigue, using multiple linear regression, is shown
in Equation (12). It should be noted that the scaled values of the coefficients are given in
this equation, so S refers to the parameters’ scaled value.

ln(Fatigue) = −0.121× SRAP + 0.072× SPGSpan − 0.094× SPGinter + 0.040× SRejuvenator

−0.056× SACVirgin − 0.023× SACRAP + 0.137× SACTotal + 0.072× SNMAS

+0.043× SAgg.below#4 + 0.010× SAgg.above#4/Agg.below#4 + 0.034× STemperature
+17.844

(12)

where ln (Fatigue) represents the natural logarithm predicted value of the fatigue in-
dex. SRAP, SPGspan, SPGinter, SRejuvenator, SACvirgin, SACRAP, SACTotal, SNMAS, SAgg.below#4,
SAgg.above#4/Agg.below#4, and STemperature signify the scaled values of the RAP content, the
span of PG of virgin added binder, the intermediate-temperature PG of virgin binder, the
rejuvenator content, the virgin binder content, the binder content in RAP, the total binder
content, the nominal maximum aggregate size in gradation, the percentage of aggregate
smaller than 4.75 mm (fine aggregate), the percentage of aggregate larger than 4.75 mm
divided by the percentage of aggregate smaller than 4.75 mm (coarse aggregate/fine aggre-
gate), and the dynamic modulus test temperature, respectively.

In multiple linear regression, the coefficient of each feature indicates the importance
and the effect of the feature on the damage. That is, a greater coefficient implies that the
feature has more impact on the model’s output (i.e., fatigue). According to Equation (12),
since the total binder content coefficient is 0.137, it is the most important feature of fatigue.
In addition, the coarse aggregate/fine aggregate, with a coefficient value of 0.010, has the
lowest impact on fatigue performance. Based on the results, the most effective feature
on fatigue performance of asphalt mixtures containing RAP is the virgin binder content,
followed by RAP content, the intermediate-temperature PG of virgin binder, the span of PG
of virgin added binder, the nominal maximum aggregate size in gradation, the virgin binder
content, the fine aggregate, the rejuvenator content, the dynamic modulus test temperature,
the binder content in RAP, and the coarse aggregate/fine aggregate, respectively.

In the COA-KNN algorithm, to achieve the final predicted values, different KNN
models with different values for K (the number of neighbors in KNN) are applied simulta-
neously. The result of each KNN model is multiplied by an optimal coefficient to present
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the ultimate prediction value. The optimal coefficients of the mentioned ensemble method
are determined by an optimization algorithm (i.e., COA).

The predicted values of KNN models for fatigue performance are given in Equation
(13). As can be seen, only four KNN models are available in the final equation (Equation
(13)), and this is because of allocating a coefficient of zero to other KNN models in the
optimization process.

ln(Fatigue) = 0.079× KNN(5) + 0.004× KNN(8) + 0.918× KNN(10) (13)

where KNN (i) signifies the KNN model considering the number of neighbors (K) is equal to
i. To predict the fatigue performance, the predicted value by KNN(5) is multiplied by 0.079
and is summed up with the predicted value by KNN(8) multiplied by 0.004, then again
is summed up with the predicted value by KNN(10) multiplied by 0.918. As mentioned,
the coefficient of other KNN models is zero, i.e., they are not chosen by the model. That is,
three KNN models predict fatigue performance, and COA-KNN applies these predicted
values to predict the ultimate prediction value.

The machine learning performance indicators of prediction algorithms on the fatigue
index prediction problem for testing and training data are indicated in Figure 3. The
machine learning performance indicators were used to evaluate the performance of the
developed model in comparison to the conventional methods. Regarding Figure 3, the
testing data R2 of COA-KNN are 0.07 more than the gradient boosting, 0.10 more than
the random forest, 0.26 more than the decision tree, and 0.35 more than multiple linear
regression. Thus, these testing data R2 obtained using COA-KNN are more than the other
conventional techniques, indicating the proposed method’s higher accuracy. Based on
these testing data MAE performance indicators, the lowest MAE of test data belongs to
COA-KNN, followed by gradient boosting, random forest, decision tree, and multiple linear
regression. The MAEs of COA-KNN test data are 0.01, 0.02, 0.04, and 0.07 ln (cycles), lower
than the MAE test data in gradient boosting, random forest, decision tree, and multiple
linear regression, respectively. Hence, it can be theorized that COA-KNN outperforms
other prediction techniques in terms of MAE. Similarly, the MAPE COA-KNN test data are
0.04% lower than gradient boosting, 0.11% lower than random forest, 0.21% lower than
decision tree, and 0.38% lower than multiple linear regression. Thus, it can be postulated
that the introduced prediction model (COA-KNN) is more accurate than the other methods
regarding MAPE. The same trend can be observed from the testing data MSE. That is,
the MSE test data obtained using COA-KNN are 0.01, 0.01, 0.03, and 0.03 (ln (cycles))2

lower than gradient boosting, random forest, decision tree, and multiple linear regression,
respectively. The VAF test data of COA-KNN are 5.77%, 5.97%, 14.85%, and 47.47% higher
than gradient boosting, random forest, decision tree, and multiple linear regression, in
the order given. However, the highest testing data A10-index is reached by decision tree,
which is 5.7% higher than COA-KNN.
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Considering all performance indicators, it can be deduced that the introduced ensem-
ble regression method (i.e., COA-KNN) outperforms all conventional prediction techniques.
In addition, among the conventional models, random forest and gradient boosting have
acceptable performances. Nonetheless, linear regression and decision tree regression may
not be qualified to predict fatigue damages.

3.1.2. Performance of Machine Learning Algorithms—Rutting

The multiple linear regression prediction equation for rutting performance is presented
in Equation (14).

Rutting = 593.19× SRAP − 1431.64× SPGSpan + 1007.17× SPGHigh − 607.97× SRejuvenator

+2031.25× SACVirgin + 1375.87× SACRAP − 1704.87× SACTotal + 197.98× SNMAS

−554.33× SAgg.below#4 − 2681.74× SAgg.above#4/Agg.below#4 + 12765
(14)

where Rutting represents the predicted value of the rutting index, SRAP, SPGspan, SPGhigh,
SRejuvenator, SACvirgin, SACRAP, SACTotal, SNMAS, SAgg.below#4, and SAgg.above#4/Agg.below#4
imply the scaled value of the RAP content, the span of PG of virgin added binder, the
high-temperature PG of virgin binder, the rejuvenator content, the virgin binder content,
the binder content in RAP, the total binder content, the nominal maximum aggregate size in
gradation, the percentage of fine aggregate, and the coarse aggregate/fine aggregate value.

Based on Equation (14), it can be observed that the rutting performance is highly
affected by the coarse aggregate/fine aggregate value with a coefficient of −2684.74, indi-
cating the corresponding impact is negative. Meanwhile, the NMAS coefficient in aggregate
gradation shows that aggregate gradation has the lowest effect on the rutting index, with
a value of 197.983. Other effective input features on the rutting performance of asphalt mix-
tures containing RAP are the virgin binder content, the total binder content, the span of PG
of virgin added binder, the binder content in RAP, the high-temperature PG of virgin binder,
the rejuvenator content, the RAP content, and the percentage of fine aggregate, respectively.

The KNN prediction model for rutting performance is shown in Equation (15).

Rutting = 0.749× KNN(1) + 0.076× KNN(6) + 0.174× KNN(7) + 51.562 (15)

where KNN (i) is the KNN model in which the number of neighbors (K) is equal to i.
According to Equation (15), the predicted value by KNN (1) multiplied by 0.749, summed
up with 0.076 and 0.174 times the predicted values by KNN (6) and KNN (7), respectively.
The obtained value is summed up with the optimal constant (i.e., 51.562), and the ultimate
value is the COA-KNN rutting performance prediction.

The machine learning performance indicators of prediction algorithms on the rutting
index prediction problem for testing and training data are indicated in Figure 4. As can be
seen, the testing data R2 reaches the maximum value using COA-KNN. The testing data R2
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of COA-KNN is 0.050 more than random forest, 0.091 more than gradient boosting, 0.222
more than decision tree, and 0.806 more than multiple linear regression. Hence, COA-KNN
outweighs other prediction algorithms based on testing data R2. Considering the MAE
test data, the MAE test data of COA-KNN are 361.44 inches lower than random forest,
890.44 inches lower than gradient boosting, 897.21 inches lower than decision tree, and
3123.89 inches lower than multiple linear regression. Accordingly, COA-KNN is the most
accurate algorithm in terms of error reduction. Similarly, the MAPE test data of COA-
KNN are 1.44%, 5.06%, 5.70%, and 22.60% lower than that of random forest, decision tree,
gradient boosting, and multiple linear regression, in the order mentioned. Regarding the
MSE, the lowest MSE test data are related to COA-KNN. The MSE test data of COA-KNN
are significantly lower than conventional methods, which are 1,297,190 inches2 less than
random forest, 2,506,610 inches2 less than gradient boosting, 7,206,180 inches2 less than
decision tree, and 19,897,280 inches2 less than multiple linear regression. The VAF test data
of COA-KNN are 6.6%, 11.72%, 28.97%, and 60.87% higher than random forest, gradient
boosting, decision tree, and multiple linear regression. Likewise, the highest A10 index is
obtained using COA-KNN, with a value of 98.73%.

Thus, it can be postulated that COA-KNN performs better than conventional predic-
tion techniques. To this end, the introduced ensemble method predicts the rutting damage
with the highest accuracy, while the multiple linear regression has the worst performance.
Among the other conventional algorithm, the prediction models of random forest and
gradient boosting are more accurate.
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3.2. Relative Influence of Variables

It is essential to assess the effects of each input variable (e.g., RAP percentage) on
the prediction model’s output (i.e., fatigue and rutting) to understand better how asphalt
performance can be improved. Since the results show that multiple linear regression is the
worst algorithm based on performance indicators, the outcomes of Equations (12) and (14)
are not trustable, and a practical approach should be considered to analyze model pa-
rameters meticulously. To this end, the importance weight values presented by Random
Forest and Gradient Boosting (the most accurate conventional techniques) are used to
prioritize models’ features. Hence, the average value of importance weights presented by
the mentioned algorithms is employed in order to consider both algorithms. That is, the
average importance weights values of the two models are calculated, and subsequently, the
features are prioritized based on it. The feature with the largest average important weight
value is considered a variable that affects the model’s output the most.

3.2.1. Fatigue Input Feature Performance

Table 3 shows the important weight values of the random forest and gradient boosting
for fatigue performance of asphalt mixtures containing RAP. As can be seen from Table 3,
the total binder content in asphalt mixes affects the fatigue performance the most since
the binder content is responsible for the stiffness of asphalt mixes which is in line with the
results presented by Sreedhar and Coleri [103]. The second important feature in fatigue
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damage is the virgin binder added to the recycled asphalt mixtures due to the fact that the
virgin binder lessens the stiffness of the mixture containing stiff binder in RAP; therefore, it
increases the fatigue life of the mixture [17]. The intermediate-temperature PG of virgin
binder is the next feature that can affect fatigue cracking since fatigue cracking occurs
in the intermediate temperature of the asphalt pavement environment [104]. It is worth
noting that RAP content is the fourth important feature of fatigue performance of mixtures
containing RAP as it makes the mixture stiffer [17]. Other input features affecting fatigue
cracking in asphalt pavements are the dynamic modulus test temperature, the asphalt
content in RAP, the span of PG of virgin added binder, the percentage of aggregate larger
than 4.75 mm, and the coarse aggregate/fine aggregate value, the nominal maximum
aggregate size in gradation, the percentage of aggregate smaller than 4.75 mm and the
rejuvenator content, in the order given. Hence, it can be concluded that the total binder
content, the virgin binder added to the recycled asphalt mixtures, and the intermediate-
temperature PG of the virgin binder are the most important parameters affecting the fatigue
index. In this regard, considering these parameters to enhance recycled asphalt’s fatigue
performance can be an optimal approach.

Table 3. Ranking of input features in fatigue.

Random Forest Gradient Boosting Average

Input
Features

Importance
Weight

Ranking
Input

Features
Importance

Weight
Ranking

Input
Features

Importance
Weight

Ranking

ACTotal 0.214 1 ACTotal 0.313 1 ACTotal 0.264 1
ACVirgin 0.167 2 RAP 0.123 2 ACVirgin 0.132 2
PGInter 0.116 3 PGInter 0.105 3 PGInter 0.110 3

Temperature 0.091 4 ACVirgin 0.097 4 RAP 0.104 4
PGSpan 0.086 5 Temperature 0.086 5 Temperature 0.088 5
RAP 0.085 6 ACRAP 0.078 6 ACRAP 0.076 6

ACRAP 0.074 7 NMAS 0.049 7 PGSpan 0.067 7
Course agg./Fine agg. 0.051 8 PGSpan 0.047 8 Course agg./Fine agg. 0.048 8

Fine agg. 0.048 9 Course agg./Fine agg. 0.044 9 NMAS 0.043 9
NMAS 0.038 10 Fine agg. 0.032 10 Fine agg. 0.040 10

Rejuvenator 0.031 11 Rejuvenator 0.024 11 Rejuvenator 0.027 11

3.2.2. Rutting Input Feature Performance

The importance weight values of random forest and gradient boosting and their aver-
age value for input variables in the rutting performance of asphalt mixtures containing RAP
are in Table 4. As can be perceived, the most influential parameter on rutting performance
is the PG span of the virgin binder added to the recycled asphalt mixture. This rheolog-
ical property of binder (i.e., PG span) plays the main role in asphalt pavement rutting
performance, and this result is in harmony with the outcomes of Taher et al. [105]. The
following important feature in rutting is the total binder content in the mixture followed
by the coarse aggregate/fine aggregate value, as the binder in mixes affects the friction
between aggregates and causes these deformations [106]. Furthermore, investigations have
shown that the coarser gradations in asphalt mixes perform better in rutting than fine
gradations [107], which is in accordance with the results of the present study. RAP content
in recycled asphalt mixes is the fourth feature affecting the rutting damage, which indicates
the improvement in rutting performance due to the stiff binder of RAP [31]. The binder
content in RAP, the percentage of fine aggregate, the high-temperature PG of added virgin
binder, the virgin binder content, the nominal maximum aggregate size in gradation, and
the rejuvenator content, are the following essential parameters on rutting, respectively.
Therefore, optimizing the PG span of the virgin binder, the total binder content in the
mixture, and the coarse aggregate/fine aggregate value should be considered the priority
in the cases where rutting performance enhancement is investigated.



Buildings 2023, 13, 1787 20 of 30

Table 4. Ranking of input features in rutting.

Random Forest Gradient Boosting Average

Input
Features

Importance
Weight

Ranking
Input

Features
Importance

Weight
Ranking

Input
Features

Importance
Weight

Ranking

PGSpan 0.253 1 PGSpan 0.299 1 PGSpan 0.276 1
Course agg./Fine agg. 0.154 2 ACTotal 0.184 2 ACTotal 0.164 2

ACTotal 0.145 3 RAP 0.136 3 Course agg./Fine agg. 0.132 3
ACRAP 0.140 4 Course agg./Fine agg. 0.110 4 RAP 0.114 4
RAP 0.092 5 Fine agg. 0.096 5 ACRAP 0.092 5

Fine agg. 0.060 6 PGHigh 0.071 6 Fine agg. 0.078 6
PGHigh 0.051 7 ACRAP 0.045 7 PGHigh 0.061 7
ACVirgin 0.050 8 ACVirgin 0.042 8 ACVirgin 0.046 8
NMAS 0.049 9 Rejuvenator 0.011 9 NMAS 0.028 9

Rejuvenator 0.006 10 NMAS 0.006 10 Rejuvenator 0.008 10

3.3. Error Histogram

The performance of prediction algorithms can be evaluated by comparing the pre-
dicted values with the measured values at laboratories. The lower distance of data points
from the quality lines indicates higher accuracy and less error in the method [25]. It is note-
worthy that the data points used for the charts belong to the training and testing datasets.

3.3.1. Accuracy of the Machine Learning Methods—Fatigue Prediction

Figure 5 depicts the predicted values versus the experimental values of the natural
logarithm of the fatigue index. As can be seen from Figure 5, in COA-KNN, approximately
all data points are on or close to the quality line, which means the appropriate correlation
between the predicted and experimental values. Random forest and gradient boosting
have acceptable performances compared to other conventional algorithms. The data points
in decision tree show more distance from the quality line followed by multiple linear
regression, indicating a higher error in contrast to other prediction algorithms. Overall,
it can be concluded that the introduced ensemble model outperforms the previously
developed methods with significantly higher accuracy and lower error.
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3.3.2. Accuracy of the Machine Learning Methods—Rutting Prediction

The graphs of the predicted data points versus measured data points for the rutting
performance of asphalt mixtures containing RAP are represented in Figure 6. As can
be seen, the best prediction performance is for the newly developed algorithm (COA-
KNN) due to the accumulation of all data points on or around the quality line except for
just two data samples. Additionally, among the conventional algorithms, random forest
and gradient boosting perform admissibly as most data points are near the quality line.
The data points in the decision tree graph show further distance from the quality line,
indicating a higher error in comparison to the foregoing methods. Likewise, except for
one point, none of the data points in multiple linear regression are on the quality line,
implying the predicted values of the model are not reliable. To this end, it can be concluded
that the proposed ensemble regression method exceeds in performance compared to the
mentioned techniques.
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4. Conclusions

This study aims to accurately predict the fatigue and rutting performances of asphalt
mixtures containing different contents of RAP. Contrary to previous investigations, fatigue
and rutting indices are used instead of dynamic modulus and rut depth, as these indices
directly indicate the fatigue and rutting life of asphalt pavements. Random forest, gradi-
ent boosting, decision tree, and multiple linear regression were utilized as conventional
prediction tools. Meanwhile, a new hybrid ensemble method, called COA-KNN, was
developed to improve the prediction accuracy, and the results were compared against
conventional prediction algorithms. COA-KNN was further applied to two databases of fa-
tigue and rutting performances. The following conclusions can be drawn from the results of
this investigation:

• The R2 values of COA-KNN test data are 0.07, 0.10, 0.26, and 0.35 more than that of
the gradient boosting, random forest, decision tree, and multiple linear regression,
respectively, in the fatigue performance prediction.

• Applying COA-KNN to the fatigue database reduces the MAE test data by 0.01, 0.02,
0.04, and 0.07 ln (cycles) compared to gradient boosting, random forest, decision tree,
and multiple linear regression, respectively.

• COA-KNN MAPE test data are 0.04%, 0.11%, 0.21%, and 0.38% lower than gradient
boosting, random forest, decision tree, and multiple linear regression, respectively, in
fatigue performance prediction.

• The MSE test data obtained using COA-KNN for fatigue prediction are 0.01, 0.01, 0.03,
and 0.03 (ln (cycles))2 lower than gradient boosting, random forest, decision tree, and
multiple linear regression, respectively.

• The R2 values of test data attained using COA-KNN for rutting performance are 0.050,
0.091, 0.222, and 0.806 more than random forest, gradient boosting, decision tree, and
multiple linear regression, respectively.

• The MAE COA-KNN test data are 361.44, 890.44, 897.21, and 3123.89 inches lower
than random forest, gradient boosting, decision tree, and multiple linear regression,
respectively, in rutting performance prediction.

• Replacing COA-KNN on the fatigue database with random forest, decision tree,
gradient boosting, and multiple linear regression can reduce the MAPE test data by
1.44%, 5.06%, 5.70%, and 22.60%, respectively.

• The MSE test data of COA-KNN are 1297190, 2506610, 7206180, and 19897280 inches2

less than the random forest, gradient boosting, decision tree, and multiple linear
regression, respectively, for the rutting database.
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• Considering the performance indicators, COA-KNN outperforms the other conven-
tional algorithms in fatigue and rutting predictions. Moreover, random forest and
gradient boosting methods had an appropriate accuracy, compared to other methods,
in both datasets.

• Based on the importance weights of random forest and gradient boosting, the most
effective features on fatigue performance of asphalt mixes containing RAP are the total
binder content in the mix, the virgin binder content, and the intermediate-temperature
PG of the virgin binder, respectively.

• According to the ranking of the variables on the rutting characteristic, the PG span of
the virgin binder, total binder content, and the coarse-to-fine aggregate ratio are the
most effective parameters on the rutting damage of recycled asphalt pavements.

• One of the limitations of this study is to apply a limited number of machine learning
algorithms. Hence, it is recommended that other machine learning techniques, such
as artificial neural networks or Gaussian Processes [108], will be applied to predict
rutting and fatigue in future studies, and their performance will be compared with the
proposed method in the current investigation.
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Appendix A

Table A1. The table of abbreviations.

RAP Reclaimed asphalt pavement
COA-KNN Coyote Optimization Algorithm and K-Nearest Neighbor

RF Random Forest regression
GB Gradient Boosting regression
DT Decision Tree regression

MLR Multiple Linear Regression
GHG Global Greenhouse Gas
HMA Hot Mix Asphalt
ANN Artificial Neural Networks
BBO Biogeography-Based Optimization algorithm
RRI Rutting Resistance Index
PG Performance Grade
RD Rut Depth

MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MSE Mean Squared Error

NMAS Nominal Maximum Aggregate Size
RAS Reclaimed Asphalt Shingles
CR Crumbed Rubber
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102. Mrówczyński, D.; Gajewski, T.; Garbowski, T. Sensitivity Analysis of Open-Top Cartons in Terms of Compressive Strength
Capacity. Materials 2023, 16, 412. [CrossRef]

103. Sreedhar, S.; Coleri, E. Effects of Binder Content, Density, Gradation, and Polymer Modification on Cracking and Rutting
Resistance of Asphalt Mixtures Used in Oregon. J. Mater. Civ. Eng. 2018, 30, 04018298. [CrossRef]

104. FHA. Administration Superpave Fundamentals; FHA: Washington, DC, USA, 2008.
105. Taher, B.M.; Mohamed, R.K.; Mahrez, A. A Review on Fatigue and Rutting Performance of Asphalt Mixes. Sci. Res. Essays 2011, 6,

670–682.
106. Golalipour, A.; Jamshidi, E.; Niazi, Y.; Afsharikia, Z.; Khadem, M. Effect of Aggregate Gradation on Rutting of Asphalt Pavements.

Procedia Soc. Behav. Sci. 2012, 53, 440–449. [CrossRef]

https://doi.org/10.1007/978-94-007-4566-7_121
https://doi.org/10.1088/1755-1315/682/1/012068
https://doi.org/10.1061/(ASCE)MT.1943-5533.0002139
https://doi.org/10.1061/9780784482469.012
https://doi.org/10.1080/10298436.2018.1542694
https://doi.org/10.1080/10298436.2020.1824294
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001946
https://doi.org/10.3390/ijerph14111420
https://www.ncbi.nlm.nih.gov/pubmed/29165330
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4191842
https://doi.org/10.1016/j.rse.2019.02.022
https://doi.org/10.22060/AJCE.2019.16124.5569
https://doi.org/10.1016/j.enconman.2019.111932
https://doi.org/10.1080/10298436.2021.1873331
https://doi.org/10.3390/s18010018
https://doi.org/10.1080/10298436.2021.1969019
https://doi.org/10.1016/j.jclepro.2020.120578
https://doi.org/10.1007/s10668-022-02283-w
https://doi.org/10.1007/s10668-021-01554-2
https://doi.org/10.1080/10298436.2022.2147672
https://doi.org/10.3390/ma16010412
https://doi.org/10.1061/(ASCE)MT.1943-5533.0002506
https://doi.org/10.1016/j.sbspro.2012.09.895


Buildings 2023, 13, 1787 30 of 30

107. Ahmed, M.A.; Attia, M.I.E. Impact of Aggregate Gradation and Type on Hot Mix Asphalt Rutting In Egypt. Int. J. Eng. Res. Appl.
(IJERA) 2013, 3, 2249–2258.

108. Garbowski, T. Stochastic Model Reduction Applied to Inverse Analysis. In Proceedings of the VI International Conference on
Adaptive Modeling and Simulation ADMOS 2013, Lisbon, Portugal, 3–5 June 2013.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	Methodology 
	The Data Preparation Process 
	Prediction Algorithms 
	Decision Tree 
	Random Forest 
	Gradient Boosting 
	Multiple Linear Regression 
	The Proposed Prediction Method (COA-KNN) 

	The Evaluation of Algorithms Performance Using the Performance Indicators 
	Prioritizing Features on Asphalt Mixture Characteristics 

	Results and Discussion 
	Performance of Algorithms 
	Performance of Machine Learning Algorithms—Fatigue 
	Performance of Machine Learning Algorithms—Rutting 

	Relative Influence of Variables 
	Fatigue Input Feature Performance 
	Rutting Input Feature Performance 

	Error Histogram 
	Accuracy of the Machine Learning Methods—Fatigue Prediction 
	Accuracy of the Machine Learning Methods—Rutting Prediction 


	Conclusions 
	Appendix A
	References

