رزومه وب سایت شخصی


EN
دکتر خالد معروفی

دکتر خالد معروفی

استادیار

دانشکده: مهندسی نفت و گاز

مقطع تحصیلی: دکترای تخصصی

رزومه وب سایت شخصی
EN
دکتر خالد معروفی

استادیار دکتر خالد معروفی

دانشکده: مهندسی نفت و گاز مقطع تحصیلی: دکترای تخصصی |

Dr. Khaled Maroufi

Assistant Professor of Petroleum Engineering

  • Assistant Professor at Sahand University of Technology (SUT), Faculty of Petroleum and Natural Gas Engineering (2021-now).
  • Senior Geochemist, Tehran Energy Consultants Company (2020-2021).
  • Well-site Geologist Supervisor at the South-Azadegan oilfield, Tehran Energy Consultants Company (2016-2018).
  • Well-site Geologist at the South Pars Gas Field, Dana Energy Group (2013-2016).
  • Mud Logger and Data Engineer at onshore and offshore rigs along with geological job, Geo-Data Company (2010-2013).

 

Education

Current
Assistant Professor of Sahand University of Technology (SUT)

  • Ph.D: Faculty of Geosciences, Shahid Chamran University, Ahwaz, Iran (Petroleum Geology) (2012-2017)
  • Ms.c: Faculty of Geosciences, Shahid Chamran University, Ahwaz, Iran (Petroleum Geology) (2009-2011)
  • BSc Degree: Faculty of Sciences, Tabriz University, Tabriz, Iran (Geology) (2005-2009)

 

Technical Skills

  • Reservoir Geochemistry
  • Petroleum System Modeling
  • Source rock characterization
  • Artificial Intelligence Techniques
  • Reservoir Characterization
  • Sequence Stratigraphy

 

Contact us:

POBox: 51335/1996 Tabriz–Iran
Tel: +98 41 33459492 
Fax: +98 41 33444345
E-mail: maroufi@sut.ac.ir
Last Updated: Mar 21, 2024

نمایش بیشتر

Evaluation of Organic Matter Content Achieved from Artificial Neural Network in a Sequence Stratigraphic Framework: A Case Study from Pabdeh Formation of Marun Oilfield

نویسندگانBahram Alizadeh, Khaled Maaroofi, Mohammad Hosein Heidarifard
نشریهAdvanced Applied Geology
نوع مقالهFull Paper
تاریخ انتشارmarch 2013
رتبه نشریهISI
نوع نشریهالکترونیکی
کشور محل چاپایران

چکیده مقاله

Evaluation of geochemical characters in a sequence stratigraphic framework, along with increase in interprets accuracy, reveals the effects of change in environmental condition on these characters. In this study, modeling a three-layered back-propagation network which has about 89% total precision was the subsequent of using Artificial Neural Network technique in order to assess the Total Organic Carbon (TOC) from petrophysical data. Sequence stratigraphy study demonstrated that the Pabdeh Formation of the Marun oilfield (Middle Eocene to Early Oligocene) has experienced several transgression and regression in its depositional span, causes different environmental conditions with various richness of organic matter in their sediments. Hereby, TOC content varies from 0.45 to 4 wt.%. This research work proposes a good agreement among petrophysical, geochemical and sequence stratigraphic boundaries …