رزومه


EN
دکتر افشین ابراهیمی

دکتر افشین ابراهیمی

استاد

دانشکده: مهندسی برق و کامپیوتر

رزومه
EN
دکتر افشین ابراهیمی

استاد دکتر افشین ابراهیمی

دانشکده: مهندسی برق و کامپیوتر

Accurate classification of brain tumors using a hybrid approach of EfficientNetB4 and Vision Transformer

نویسندگانElaheh ElahiparastBagheri - Afshin Ebrahimi
همایشICBME 2025
تاریخ برگزاری همایش2025-11-19
محل برگزاری همایشTabriz
ارائه به نام دانشگاهSahand University of Technology
شماره صفحات۳۸۳
نوع ارائهسخنرانی
سطح همایشبین المللی

چکیده مقاله

In this study, a hybrid model named FusionNet was proposed for the classification of brain tumors from MRI images. FusionNet consists of EfficientNetB4 and a Vision Transformer, which simultaneously extracts local features and long-range dependencies from the images. Experiments on a validated dataset demonstrated that this model, with an accuracy of 99.26%, performs better than baseline architectures and identifies three common types of brain tumors with high accuracy and a high F1-score. Analysis of the results indicates that combining the local features of EfficientNetB4 with the Transformer's ability to understand global image relationships plays a key role in improving performance. These findings suggest that FusionNet can serve as a high-efficiency automated brain tumor diagnosis tool suitable for application in clinical environments.

لینک ثابت مقاله